O’Brien, R. D. & Wolfe, R. S. Nongenetic effects of radiation. In Radiation, Radioactivity, and Insects (eds O’Brien, R. D. & Wolfe, R. S.) 23–54 (Academic Press Inc., Ltd., 1964).
Google Scholar
Bakri, A., Mehta, K. & Lance, D. R. Sterilizing insects with ionizing radiation. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 233–268 (Springer, 2005).
Google Scholar
Koval, T. M. Intrinsic resistance to the lethal effects of X-irradiation in insect and arachnid cells. Proc. Natl. Acad. Sci. USA 80, 4752–4755. https://doi.org/10.1073/pnas.80.15.4752 (1983).
Google Scholar
Balock, J. W., Burditt, A. K. & Christenson, L. D. Effects of gamma radiation on various stages of three fruit fly species. J. Econ. Entomol. 56, 42–46 (1963).
Google Scholar
Hooper, G. H. S. The effect of ionizing radiation on reproduction. In Fruit Flies Their Biology, Natural Enemies, and Control (eds Robinson, A. S. & Hooper, G.) 153–164 (World Crop Pests, 1989).
Robinson, A. S. Genetic basis of the sterile insect technique. In The Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 95–114 (Springer, 2005).
Google Scholar
Lauzon, C. R. & Potter, S. E. Description of the irradiated and nonirradiated midgut of Ceratitis capitata Wiedemann (Diptera: Tephritidae) and Anastrepha ludens Loew (Diptera: Tephritidae) used for sterile insect technique. J. Pest Sci. 85, 217–222 (2012).
Google Scholar
Knipling, E. F. Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol. 48, 459–469 (1955).
Google Scholar
Riley, P. A. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 65, 27–33 (1994).
Google Scholar
Foshier, S. Cellular effects of radiation. In Essentials of Radiation, Biology, and Protection (ed. Foshier, S.) 43–62 (Delmar Thomson Learning, 2009).
Richardson, B. & Harper, M. E. Mitochondrial stress controls the radiosensitivity of the oxygen effect: implications for radiotherapy. Oncotarget 7, 21469–21483 (2016).
Google Scholar
Monaghan, P., Metcalfe, N. B. & Torres, R. Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol. Lett. 12, 75–92 (2009).
Google Scholar
Brieger, K., Schiavone, S., Miller, F. J. & Krause, K. H. Reactive oxygen species: from health to disease. Swiss Med. Wkly. https://doi.org/10.4414/smw.2012.13659 (2012).
Google Scholar
von Schantz, T., Bensch, S., Grahn, M., Hasselquist, D. & Wittzel, H. Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. Lond. 266, 1–12. https://doi.org/10.1098/rspb.1999.0597 (1999).
Google Scholar
Metcalf, N. B. & Alonso-Alvarez, C. Oxidative stress as a life-history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death. Funct. Ecol. 24, 984–996 (2010).
Google Scholar
Benoit, J. B. & López-Martínez, G. Role of conventional and unconventional stress proteins during the response of insects to traumatic environmental conditions. In Hemolymph Proteins and Functional Peptides: Recent Advances in Insects and Other Arthropods (eds Tufail, M. & Takeda, M.) 128–160 (Bentham Science Publishers, 2012).
Holbrook, F. R. & Fujimoto, M. S. Mating competitiveness of unirradiated and irradiated Mediterranean fruit flies. J. Econ. Entomol. 63, 1175–1176 (1970).
Google Scholar
Ohinata, K., Chambers, D. L., Fujimoto, M., Kashiwai, S. & Miyabara, R. Sterilization of the Mediterranean fruit fly by irradiation comparative mating effectiveness of treated pupae and adults. J. Econ. Entomol. 64, 781–784 (1971).
Google Scholar
Sharp, J. L. & Webb, J. C. Flight performance and signaling sound of irradiated or unirradiated Anastrepha suspensa. Proc. Hawaii Entomol. Soc. 22, 525–532 (1977).
Webb, J. C., Sivinski, J. & Smittle, B. J. Acoustical courtship signals and sexual success in irradiated Caribbean fruit flies (Anastrepha suspensa) (Diptera: Tephritidae). Fla. Entomol. 70, 103–109 (1987).
Google Scholar
Moreno, D. S., Sanchez, M., Robacker, D. C. & Worley, J. Mating competitiveness of irradiated Mexican fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 84, 1227–1234 (1991).
Google Scholar
Ponce, W. P., Nation, J. L., Emmel, T. C., Smittle, B. J. & Teal, P. E. A. Quantitative analysis of pheromone production in irradiated Caribbean fruit fly males, Anastrepha suspensa (Loew). J. Chem. Ecol. 19, 3045–3056 (1993).
Google Scholar
Heath, R. R., Epsky, N. D., Dueben, B. D., Guzman, A. & Rade, L. E. Gamma radiation effect on production of four pheromonal components of male Mediterranean fruit flies (Diptera: Tephritidae). J. Econ. Entomol. 87, 904–909 (1994).
Google Scholar
Lux, S. A. et al. Effects of irradiation on the courtship behavior of medfly (Diptera, Tephritidae) mass reared for the Sterile Insect Technique. Fla. Entomol. 85, 102–112 (2002).
Google Scholar
Barry, J. D., McInnis, D. O., Gates, D. & Morse, J. G. Effects of irradiation on Mediterranean fruit flies (Diptera:Tephritidae): emergence, survivorship, lure attraction and mating competition. J. Econ. Entomol. 96, 615–622 (2003).
Google Scholar
Calkins, C. O. & Parker, A. G. Sterile insect quality. In The Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 269–296 (Springer, 2005).
Google Scholar
Lance, D. R. & McInnis, D. O. Biological basis of the sterile insect technique. In The Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 69–94 (Springer, 2005).
Google Scholar
Thoday, J. M. & Read, J. Effect of oxygen on the frequency of chromosome aberrations produced by X-rays. Nature 160, 608 (1947).
Google Scholar
FAO/IAEA/USDA. Product Quality Control for Sterile Mass-Reared and Released Tephritid Fruit Flies V 7.0 (IAEA, 2019).
FAO/IAEA. Guideline for Packing, Shipping, Holding and Release of Sterile Flies in Area-Wide Fruit Fly Control Programmes (FAO, 2017).
Langley, P. A. & Maly, H. Control of the Mediterranean fruit fly (Ceratitis capitata) using sterile males: effects of nitrogen and chilling during gamma-irradiation of puparia. Entomol. Exp. Appl. 14, 137–146 (1971).
Google Scholar
Hooper, G. H. S. Competitiveness of gamma-sterilized males of the Mediterranean fruit fly: effects of irradiating pupal or adult stage and of irradiating pupae in nitrogen. J. Econ. Entomol. 64, 1364–1368 (1971).
Google Scholar
Hooper, G. H. S. Sterilization of Dacus cucumis French (Diptera: Tephritidae) by gamma radiation. I. Effect of dose on fertility, survival and competitiveness. J. Aust. Entomol. Soc. 14, 81–87 (1975).
Google Scholar
Zumreoglu, A., Ohinata, K., Fujimoto, M., Higa, H. & Harris, E. J. Gamma irradiation of the Mediterranean fruit fly: Effect of treatment of immature pupae in nitrogen on emergence, longevity, sterility, sexual competitiveness, mating ability, and pheromone production of males. J. Econ. Entomol. 72, 173–176 (1979).
Google Scholar
Fisher, K. Irradiation effects in air and in nitrogen on Mediterranean fruit fly (Diptera: Tephritidae) pupae in western Australia. J. Econ. Entomol. 90, 1609–1614 (1997).
Google Scholar
Rull, J., Birke, A., Ortega, R., Montoya, P. & Lopez, L. Quantity and safety vs. quality and performance: conflicting interests during mass rearing and transport affect the efficiency of sterile insect technique programs. Entomol. Exp. Appl. 142, 78–86 (2012).
Google Scholar
Lopez-Martinez, G. & Hahn, D. A. Short-term anoxic conditioning hormesis boosts antioxidant defenses, lowers oxidative damage following irradiation and enhances male sexual performance in the Caribbean fruit fly, Anastrepha suspensa. J. Exp. Biol. 215, 2150–2161 (2012).
Google Scholar
Lopez-Martinez, G. & Hahn, D. A. Early life hormetic treatments decrease irradiation-induced oxidative damage, increase longevity, and enhance sexual performance during old age in the Caribbean fruit fly. PLoS ONE 9, e88128 (2014).
Google Scholar
Sivinski, J. Lekking and the small-scale distribution of the sexes in the Caribbean fruit fly, Anastrepha suspensa (Loew). J. Insect Behav. 2, 3–13 (1989).
Google Scholar
Teets, N. M. et al. Overexpression of an antioxidant enzyme improves male mating performance after stress in a lek-mating fruit fly. Proc. R. Soc. B. https://doi.org/10.1098/rspb.2019.0531 (2019).
Google Scholar
Costantini, D. Understanding diversity in oxidative status and oxidative stress: the opportunities and challenges ahead. J. Exp. Biol. https://doi.org/10.1242/jeb.194688 (2019).
Google Scholar
Beehler, B. M. & Foster, M. S. Hotshots, hotspots, and female preference in the organization of lek mating system. Am. Nat. 131, 203–219 (1988).
Google Scholar
Shelly, T. E. Exposure to alpha-copaene and alpha-copaene-containing oils enhances mating success of male Mediterranean fruit flies (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 94, 497–502 (2001).
Google Scholar
Field, S. A., Kaspi, R. & Yuval, B. Why do calling medflies (Diptera: Tephritidae) cluster? Assessing the empirical evidence for models of medfly lek evolution. Fla. Entomol. 85, 63–72 (2002).
Google Scholar
Widemo, F. & Owens, I. P. F. Lek size, male mating skew and the evolution of lekking. Nature 373, 148–151 (1995).
Google Scholar
Cestari, C., Loiselle, B. A. & Pizo, M. A. Trade-offs in male display activity with lek size. PLoS ONE 11, e0162943 (2016).
Google Scholar
Rendon, P., McInnis, D., Lance, D. & Stewart, J. Medfly (Diptera: Tephritidae) genetic sexing: large-scale field comparison of males-only and bisexual sterile fly releases in Guatemala. J. Econ. Entomol. 97, 1547–1553 (2004).
Google Scholar
Hendrichs, J., Robinson, A. S., Cayol, J. P. & Enkerlin, W. R. Medfly areawide Sterile Insect Technique programmes for prevention, suppression or eradication: the importance of mating behavior studies. Fla. Entomol. 85, 1–13 (2002).
Google Scholar
Pereira, R. et al. Improving sterile male performance in support of programmes integrating the sterile insect technique against fruit flies. J. Appl. Entomol. 137, S178–S190 (2013).
Google Scholar
Wiley, R. H. Errors, exaggerations and deception in animal communication. In Behavioural Mechanisms in Evolutionary Ecology (ed. Real, L. A.) 157–189 (University of Chicago Press, 1994).
Cotton, S., Small, J. & Pomiankowski, A. Sexual selection and condition-dependent mate preferences. Curr. Biol. 16, 755–765 (2006).
Google Scholar
Sivinski, J. & Burk, T. Reproductive and mating behaviour. In Fruit Flies: Their Biology, Natural Enemies and Control (eds Robinson, A. & Hooper, G.) 343–351 (Elsevier, 1989).
Hooper, G. H. S. Sterilization of the Mediterranean fruit fly: a review of laboratory data. in Sterile male technique for the control of fruit flies 3–12 (IAEA, 1970).
Collins, S. R., Weldon, C. W., Banos, C. & Taylor, P. W. Effects of irradiation dose rate on quality and sterility of Queensland fruit flies, Bactrocera tryoni (Froggatt). J. Appl. Entomol. 132, 398–405 (2008).
Google Scholar
Turrens, J. F. Mitochondrial formation of reactive oxygen species. J. Physiol. Lond. 552, 335–344 (2003).
Google Scholar
Zhou, Y., Hu, L. F., Wu, H., Jiang, L. W. & Liu, S. Q. Genome-wide identification and transcriptional expression analysis of cucumber superoxide dismutase (SOD) family in response to various abiotic stresses. Int. J. Genomics https://doi.org/10.1155/2017/7243973 (2017).
Google Scholar
Lesser, M. P. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu. Rev. Physiol. 68, 253–278 (2006).
Google Scholar
Martinez-Lendech, N., Golab, M. J., Osorio-Beristain, M. & Contreras-Garduno, J. Sexual signals reveal males’ oxidative stress defences: testing this hypothesis in an invertebrate. Funct. Ecol. 32, 937–947 (2018).
Google Scholar
Romero-Haro, A. A. & Alonso-Alvarez, C. The level of an intracellular antioxidant during development determines the adult phenotype in a bird species: a potential organizer role for glutathione. Am. Nat. 185, 390–405 (2015).
Google Scholar
Nestel, D., Nemny-Lavy, E., Islam, S. M., Wornoayporn, V. & Cáceres, C. Effects of pre-irradiation conditioning of medfly pupae (Diptera: Tephritidae): hypoxia and quality of sterile males. Fla. Entomol. 90, 80–87 (2007).
Google Scholar
Bartholomew, N. R., Burdett, J. M., VandenBrooks, J. M., Quinlan, M. C. & Call, G. B. Impaired climbing and flight behaviour in Drosophila melanogaster following carbon dioxide anaesthesia. Sci. Rep. 5, 15298 (2015).
Google Scholar
Hermes-Lima, M. et al. Preparation for oxidative stress under hypoxia and metabolic depression: revisiting the proposal two decades later. Free Radic. Biol. Med. 89, 1122–1143 (2015).
Google Scholar
Moreira, D. C., Venancio, L. P. R., Sabino, M. A. C. T. & Hermes-Lima, M. How widespread is preparation for oxidative stress in the animal kingdom?. Comp. Biochem. Physiol. A 200, 64–78 (2016).
Google Scholar
Giraud-Billoud, M. et al. Twenty years of the ‘preparation for oxidative stress’ (POS) theory: ecophysiological advantages and molecular strategies. Comp. Biochem. Physiol. A 234, 36–49 (2019).
Google Scholar
Hermes-Lima, M. & Zenteno-Savin, T. Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp. Biochem. Phys. C 133, 537–556 (2002).
Google Scholar
Bates, D. et al. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
Google Scholar
Length, R. V. emmeans: Estimated Marginal Means, Aka Least-Squares Means. R package Version 1.6.2-1 (2021). https://CRAN.R-project.org/package=emmeans.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2021). https://www.R-project.org/.
RStudio Team. RStudio: Integrated Development Environment for R. RStudio (PBC, Boston, 2021). http://www.rstudio.com/.
Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).
Source: Ecology - nature.com