Amato, K. R. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution. Am. J. Phys. Anthropol. 159, S196–S215 (2016).
Google Scholar
Ley, R., Hamady, M. & Lozupone, C. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).
Google Scholar
Walter, J. Ecological role of lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Appl. Environ. Microbiol. 74, 4985–4996 (2008).
Google Scholar
O’Callaghan, A. & van Sinderen, D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 7, 925 (2016).
Google Scholar
Redford, K. H., Segre, J. A., Salafsky, N., Del Rio, C. M. & Mcaloose, D. Conservation and the microbiome. Conserv. Biol. 26, 195–197 (2012).
Google Scholar
Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory towards an understanding of the human microbiome. Science 336, 1255–1262 (2012).
Google Scholar
Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).
Google Scholar
Kohl, K. D., Skopec, M. M. & Dearing, M. D. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv. Physiol. 2, cou009 (2014).
Google Scholar
Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. 113, 10376–10381 (2016).
Google Scholar
McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).
Google Scholar
Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).
Google Scholar
Myers, S. P. & Hawrelak, J. A. The causes of intestinal dysbiosis: a review. Altern. Med. Rev. 9, 180–197 (2004).
Google Scholar
Knights, D. et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 6, 107 (2014).
Google Scholar
Perofsky, A. C., Lewis, R. J., Abondano, L. A., Fiore, A. D. & Meyers, L. A. Hierarchical social networks shape gut microbial composition in wild Verreaux ’ s sifaka. Proc. R. Soc. B Biol. Sci. 248, 20172274 (2017).
Google Scholar
Phillips, C. D. et al. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol. Ecol. 21, 2617–2627 (2012).
Google Scholar
Hale, V. L. et al. Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microb. Ecol. 75, 515–527 (2018).
Google Scholar
Delsuc, F. et al. Convergence of gut microbiomes in myrmecophagous mammals. Mol. Ecol. 23, 1301–1317 (2014).
Google Scholar
Lambert, J. E. Primate Nutritional Ecology: Feeding Biology and Diet at Ecological and Evolutionary Scales: Primates in Perspective (Oxford University Press, 2010).
Gomez, A. et al. Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME J. 10, 514–526 (2016).
Google Scholar
Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353 (2013).
Google Scholar
Ochman, H. et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 8, 3–10 (2010).
Google Scholar
Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2018).
Google Scholar
Borbón-García, A., Reyes, A., Vives-Flórez, M. & Caballero, S. Captivity shapes the gut microbiota of Andean bears: Insights into health surveillance. Front. Microbiol. 8, 1316 (2017).
Google Scholar
Kohl, K. D. & Dearing, M. D. Wild-caught rodents retain a majority of their natural gut microbiota upon entrance into captivity. Environ. Microbiol. Rep. 6, 191–195 (2014).
Google Scholar
Xiao, Y. et al. Captivity causes taxonomic and functional convergence of gut microbial communities in bats. PeerJ 7, e6844 (2019).
Google Scholar
Prabhu, V. R., Wasimuddin, V. R., Kamalakkannan, R., Arjun, M. S. & Nagarajan, M. Consequences of domestication on gut microbiome: a comparative study between wild gaur and domestic mithun. Front. Microbiol. 11, 133 (2020).
Google Scholar
Chaves, Ó. M., Stoner, K. E. & Arroyo-Rodríguez, V. Differences in diet between spider monkey groups living in forest fragments and continuous forest in Mexico. Biotropica 44, 105–113 (2012).
Google Scholar
Nakagawa, N. Determinants of the dramatic seasonal changes in the intake of energy and protein by Japanese monkeys in a cool temperate forest. Am. J. Primatol. 41, 267–288 (1997).
Google Scholar
Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2014).
Google Scholar
Chen, T., Li, Y., Liang, J., Li, Y. & Huang, Z. Gut microbiota of provisioned and wild rhesus macaques (Macaca mulatta) living in a limestone forest in southwest Guangxi China. Microbiologyopen 9, e981 (2020).
Google Scholar
Mackie, R. I., Sghir, A. & Gaskins, H. R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69, 1035s–1045s (1999).
Google Scholar
Donnet-hughes, A. et al. Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc. Nutr. Soc. 69, 407–415 (2010).
Google Scholar
Orkin, J. D. et al. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 13, 183–196 (2019).
Google Scholar
Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2015).
Google Scholar
Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U. S. A. 102, 11070–11075 (2005).
Google Scholar
Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U. S. A. 104, 13780–13785 (2007).
Google Scholar
Shin, N. R., Whon, T. W. & Bae, J. W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503 (2015).
Google Scholar
Jang, H. B., Choi, M. K., Kang, J. H., Park, S. I. & Lee, H. J. Association of dietary patterns with the fecal microbiota in Korean adolescents. BMC Nutr. 3, 1–11 (2017).
Google Scholar
Wang, B. et al. Comparison of the fecal microbiomes of healthy and diarrheic captive wild boar. Microb. Pathog. 147, 104377 (2020).
Google Scholar
Tang, J. et al. Gut microbiota in reintroduction of giant panda. Ecol. Evol. 10, 1012–1028 (2020).
Google Scholar
Clayton, J. B. et al. The gut microbiome of nonhuman primates: Lessons in ecology and evolution. Am. J. Primatol. 80, e22867 (2018).
Google Scholar
Martínez-Mota, R., Kohl, K. D., Orr, T. J. & Denise Dearing, M. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J. 14, 67–78 (2020).
Google Scholar
Kilkenny, C. et al. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).
Google Scholar
Vargas, S. A., León, J., Ramírez, M., Galvis, N., Cifuentes, E., & Stevenson, P. R. Population density and ecological traits of highland woolly monkeys at Cueva de los Guácharos National Park, Colombia. In High altitude primates Springer, New York. 85–102 (2014)
Stevenson, P. R. Seed dispersal by woolly monkeys (Lagothrix lagothricha) at Tinigua National Park, Colombia: dispersal distance, germination rates, and dispersal quantity. Am. J. Primatol. Off. J. Am. Soc. Primatol. 50, 275–289 (2000).
Google Scholar
Botero, S., Rengifo, L. Y., Bueno, M. L. & Stevenson, P. R. How many species of woolly monkeys inhabit Colombian forests?. Am. J. Primatol. 72, 1131–1140 (2020).
Google Scholar
Di Fiore, A. et al. The rise and fall of a genus: Complete mtDNA genomes shed light on the phylogenetic position of yellow-tailed woolly monkeys, Lagothrix flavicauda, and on the evolutionary history of the family Atelidae (Primates: Platyrrhini). Mol. Phylogenet. Evol. 82, 495–510 (2015).
Google Scholar
Fooden, D. A revision of the woolly monkeys (genus Lagothrix). J. Mammal. 44, 213–247 (1963).
Google Scholar
Botero, S. & Stevenson, P. R. Coat color is not an indicator of subspecies identity in colombian woolly monkeys. The Woolly Monkey https://doi.org/10.1007/978-1-4939-0697-0 (2014).
Google Scholar
Stevenson, P. R. Activity and ranging patterns of Colombian woolly monkeys in north-western Amazonia. Primates https://doi.org/10.1007/s10329-005-0172-6 (2006).
Google Scholar
Altmann, J. Observational study of behavior: sampling methods. Behaviuor. 49, 227–266 (1974).
Google Scholar
Caporaso, J. G. et al. Correspondence QIIME allows analysis of high-throughput community sequencing data intensity normalization improves color calling in SOLiD sequencing. Nat. Publ. Gr 7, 335–336 (2010).
Google Scholar
Liu, Z., Lozupone, C., Hamady, M., Bushman, F. D. & Knight, R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucl. Acids Res. 35, e120 (2007).
Google Scholar
Liu, Z., Desantis, T. Z., Andersen, G. L. & Knight, R. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucl. Acids Res. 36, 1–11 (2008).
Google Scholar
Yang, B., Wang, Y. & Qian, P. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinform. 17, 1–8 (2016).
Google Scholar
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
Google Scholar
Andrews, S. FastQC: a quality control tool for high throughput sequence data. (2010).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).
Google Scholar
Amir, A. et al. Deblur rapidly resolves single-. Am. Soc. Microbiol. 2, 1–7 (2017).
DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).
Google Scholar
Douglas, G. M., Maffei, V. J., Zaneveld, J., Yurgel, S. N., Brown, J. R., Taylor, C. M., & Langille, M. G. PICRUSt2: An improved and extensible approach for metagenome inference. BioRxiv 672295 (2020).
McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
Google Scholar
Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
Google Scholar
Barton, K. MuMIn: multi-model inference. (2009). http://r-forge.R-project.org/projects/mumin/.
Richards, S. A., Whittingham, M. J. & Stephens, P. A. Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89 (2011).
Google Scholar
Source: Ecology - nature.com