in

Monitoring the variation in the gut microbiota of captive woolly monkeys related to changes in diet during a reintroduction process

  • 1.

    Amato, K. R. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution. Am. J. Phys. Anthropol. 159, S196–S215 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Ley, R., Hamady, M. & Lozupone, C. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Walter, J. Ecological role of lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Appl. Environ. Microbiol. 74, 4985–4996 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    O’Callaghan, A. & van Sinderen, D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 7, 925 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Redford, K. H., Segre, J. A., Salafsky, N., Del Rio, C. M. & Mcaloose, D. Conservation and the microbiome. Conserv. Biol. 26, 195–197 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory towards an understanding of the human microbiome. Science 336, 1255–1262 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Kohl, K. D., Skopec, M. M. & Dearing, M. D. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv. Physiol. 2, cou009 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. 113, 10376–10381 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Myers, S. P. & Hawrelak, J. A. The causes of intestinal dysbiosis: a review. Altern. Med. Rev. 9, 180–197 (2004).

    PubMed 

    Google Scholar 

  • 13.

    Knights, D. et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 6, 107 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 14.

    Perofsky, A. C., Lewis, R. J., Abondano, L. A., Fiore, A. D. & Meyers, L. A. Hierarchical social networks shape gut microbial composition in wild Verreaux ’ s sifaka. Proc. R. Soc. B Biol. Sci. 248, 20172274 (2017).

    Article 

    Google Scholar 

  • 15.

    Phillips, C. D. et al. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol. Ecol. 21, 2617–2627 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Hale, V. L. et al. Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microb. Ecol. 75, 515–527 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 17.

    Delsuc, F. et al. Convergence of gut microbiomes in myrmecophagous mammals. Mol. Ecol. 23, 1301–1317 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Lambert, J. E. Primate Nutritional Ecology: Feeding Biology and Diet at Ecological and Evolutionary Scales: Primates in Perspective (Oxford University Press, 2010).

    Google Scholar 

  • 19.

    Gomez, A. et al. Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME J. 10, 514–526 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Ochman, H. et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 8, 3–10 (2010).

    Article 
    CAS 

    Google Scholar 

  • 22.

    Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 23.

    Borbón-García, A., Reyes, A., Vives-Flórez, M. & Caballero, S. Captivity shapes the gut microbiota of Andean bears: Insights into health surveillance. Front. Microbiol. 8, 1316 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Kohl, K. D. & Dearing, M. D. Wild-caught rodents retain a majority of their natural gut microbiota upon entrance into captivity. Environ. Microbiol. Rep. 6, 191–195 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Xiao, Y. et al. Captivity causes taxonomic and functional convergence of gut microbial communities in bats. PeerJ 7, e6844 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Prabhu, V. R., Wasimuddin, V. R., Kamalakkannan, R., Arjun, M. S. & Nagarajan, M. Consequences of domestication on gut microbiome: a comparative study between wild gaur and domestic mithun. Front. Microbiol. 11, 133 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Chaves, Ó. M., Stoner, K. E. & Arroyo-Rodríguez, V. Differences in diet between spider monkey groups living in forest fragments and continuous forest in Mexico. Biotropica 44, 105–113 (2012).

    Article 

    Google Scholar 

  • 28.

    Nakagawa, N. Determinants of the dramatic seasonal changes in the intake of energy and protein by Japanese monkeys in a cool temperate forest. Am. J. Primatol. 41, 267–288 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Chen, T., Li, Y., Liang, J., Li, Y. & Huang, Z. Gut microbiota of provisioned and wild rhesus macaques (Macaca mulatta) living in a limestone forest in southwest Guangxi China. Microbiologyopen 9, e981 (2020).

    PubMed 

    Google Scholar 

  • 31.

    Mackie, R. I., Sghir, A. & Gaskins, H. R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69, 1035s–1045s (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Donnet-hughes, A. et al. Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc. Nutr. Soc. 69, 407–415 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    Orkin, J. D. et al. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 13, 183–196 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2015).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U. S. A. 102, 11070–11075 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U. S. A. 104, 13780–13785 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Shin, N. R., Whon, T. W. & Bae, J. W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Jang, H. B., Choi, M. K., Kang, J. H., Park, S. I. & Lee, H. J. Association of dietary patterns with the fecal microbiota in Korean adolescents. BMC Nutr. 3, 1–11 (2017).

    Article 

    Google Scholar 

  • 39.

    Wang, B. et al. Comparison of the fecal microbiomes of healthy and diarrheic captive wild boar. Microb. Pathog. 147, 104377 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Tang, J. et al. Gut microbiota in reintroduction of giant panda. Ecol. Evol. 10, 1012–1028 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Clayton, J. B. et al. The gut microbiome of nonhuman primates: Lessons in ecology and evolution. Am. J. Primatol. 80, e22867 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Martínez-Mota, R., Kohl, K. D., Orr, T. J. & Denise Dearing, M. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J. 14, 67–78 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 43.

    Kilkenny, C. et al. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 44.

    Vargas, S. A., León, J., Ramírez, M., Galvis, N., Cifuentes, E., & Stevenson, P. R. Population density and ecological traits of highland woolly monkeys at Cueva de los Guácharos National Park, Colombia. In High altitude primates Springer, New York. 85–102 (2014)

  • 45.

    Stevenson, P. R. Seed dispersal by woolly monkeys (Lagothrix lagothricha) at Tinigua National Park, Colombia: dispersal distance, germination rates, and dispersal quantity. Am. J. Primatol. Off. J. Am. Soc. Primatol. 50, 275–289 (2000).

    CAS 

    Google Scholar 

  • 46.

    Botero, S., Rengifo, L. Y., Bueno, M. L. & Stevenson, P. R. How many species of woolly monkeys inhabit Colombian forests?. Am. J. Primatol. 72, 1131–1140 (2020).

    Article 

    Google Scholar 

  • 47.

    Di Fiore, A. et al. The rise and fall of a genus: Complete mtDNA genomes shed light on the phylogenetic position of yellow-tailed woolly monkeys, Lagothrix flavicauda, and on the evolutionary history of the family Atelidae (Primates: Platyrrhini). Mol. Phylogenet. Evol. 82, 495–510 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 48.

    Fooden, D. A revision of the woolly monkeys (genus Lagothrix). J. Mammal. 44, 213–247 (1963).

    Article 

    Google Scholar 

  • 49.

    Botero, S. & Stevenson, P. R. Coat color is not an indicator of subspecies identity in colombian woolly monkeys. The Woolly Monkey https://doi.org/10.1007/978-1-4939-0697-0 (2014).

    Article 

    Google Scholar 

  • 50.

    Stevenson, P. R. Activity and ranging patterns of Colombian woolly monkeys in north-western Amazonia. Primates https://doi.org/10.1007/s10329-005-0172-6 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 51.

    Altmann, J. Observational study of behavior: sampling methods. Behaviuor. 49, 227–266 (1974).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Caporaso, J. G. et al. Correspondence QIIME allows analysis of high-throughput community sequencing data intensity normalization improves color calling in SOLiD sequencing. Nat. Publ. Gr 7, 335–336 (2010).

    CAS 

    Google Scholar 

  • 53.

    Liu, Z., Lozupone, C., Hamady, M., Bushman, F. D. & Knight, R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucl. Acids Res. 35, e120 (2007).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 54.

    Liu, Z., Desantis, T. Z., Andersen, G. L. & Knight, R. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucl. Acids Res. 36, 1–11 (2008).

    Article 
    CAS 

    Google Scholar 

  • 55.

    Yang, B., Wang, Y. & Qian, P. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinform. 17, 1–8 (2016).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article 

    Google Scholar 

  • 57.

    Andrews, S. FastQC: a quality control tool for high throughput sequence data. (2010).

  • 58.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 60.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Amir, A. et al. Deblur rapidly resolves single-. Am. Soc. Microbiol. 2, 1–7 (2017).

    Google Scholar 

  • 62.

    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Douglas, G. M., Maffei, V. J., Zaneveld, J., Yurgel, S. N., Brown, J. R., Taylor, C. M., & Langille, M. G. PICRUSt2: An improved and extensible approach for metagenome inference. BioRxiv 672295 (2020).

  • 64.

    McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 66.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • 67.

    Barton, K. MuMIn: multi-model inference. (2009). http://r-forge.R-project.org/projects/mumin/.

  • 68.

    Richards, S. A., Whittingham, M. J. & Stephens, P. A. Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89 (2011).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Transforming lives by providing safe drinking water

    Local adaptation to continuous mowing makes the noxious weed Solanum elaeagnifolium a superweed candidate by improving fitness and defense traits