in

Monsoon forced evolution of savanna and the spread of agro-pastoralism in peninsular India

  • 1.

    Whyte, R. O. Grassland and Fodder Resources of India Revised. (Indian Council of Agricultural Research, 1964).

    Google Scholar 

  • 2.

    Misra, R. The vegetation of the Indian Savannas. In Tropical Savannas (ed. Bourliere, F.) 151–166 (Elsevier, 1983).

  • 3.

    Behrensmeyer, A. K. et al. The structure and rate of late Miocene expansion of C4 plants: evidence from lateral variation in stable isotopes in paleosols of the Siwalik Group, northern Pakistan. GSA Bull. 119, 1486–1505 (2007).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Government of India Press, 1968).

    Google Scholar 

  • 5.

    Mani, M. S. The Flora. In Ecology and Biogeography in India (ed. Mani, M. S.) 159–177 (Dr. W. Junk b.v. Publishers, 1974).

  • 6.

    Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. B 371, 20150305 (2016).

    Article 
    CAS 

    Google Scholar 

  • 7.

    Blasco, F. The transition from open forest to Savanna in continental Southeast Asia. In Tropical Savannas (ed. Bourliere, F.) 167–182 (Elsevier, 1983).

  • 8.

    Puri, G. S., Meher Homji, V. M., Gupta, R. K. & Puri, S. Forest Ecology. Phytogeography and Conservation Vol. 1 (Oxford & IBH Publishing, 1983).

    Google Scholar 

  • 9.

    Fuller, D. Q. & Korisettar, R. The vegetational context of early agriculture in South India. Man Environ. 29, 7–27 (2004).

    Google Scholar 

  • 10.

    Fuller, D. Q. Finding plant domestication in the Indian subcontinent. Curr. Anthropol. 52, S347–S362 (2011).

    Article 

    Google Scholar 

  • 11.

    Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A. & Bond, W. J. Deciphering the distribution of the savanna biome. New Phytol. 191, 197–209 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Staver, A. C., Archibald, S. & Levin, S. A. Tree-cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. Ecology 92, 1063–1072 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Bond, W. J. What limits trees in C4 grasslands and savannas?. Annu. Rev. Ecol. Evol. Syst. 39, 641–659 (2008).

    Article 

    Google Scholar 

  • 14.

    Hirota, M., Holmgren, M., Van Nes, E. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    ADS 
    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Mayle, F. E. & Power, M. J. Impact of a drier early–mid-Holocene climate upon Amazonian forests. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1829–1838 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Ngomanda, A. et al. Western equatorial African forest-savanna mosaics: a legacy of late Holocene climatic change?. Clim. Past 5, 647–659 (2009).

    Article 

    Google Scholar 

  • 18.

    Metwally, A. A., Scott, L., Neumann, F. H., Bamford, M. K. & Oberhänsli, H. Holocene palynology and palaeoenvironments in the Savanna Biome at Tswaing Crater, central South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 402, 125–135 (2014).

    Article 

    Google Scholar 

  • 19.

    Kuper, R. & Kröpelin, S. Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science 313, 803–807 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Mayewski, P. A. et al. Holocene climate variability. Quat. Res. 62, 243–255 (2004).

    Article 

    Google Scholar 

  • 21.

    Wanner, H. et al. Mid- to late Holocene climate change: an overview. Quat. Sci. Rev. 27, 1791–1828 (2008).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Kathayat, G. et al. The Indian monsoon variability and civilization changes in the Indian subcontinent. Sci. Adv. 3, e1701296 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Shinde, V. The origin and development of the Chalcolithic in Central India. Indo-Pac. Prehist. Assoc. Bull. 19, 125–136 (2000).

    Google Scholar 

  • 24.

    Fuller, D. Q. Agricultural origins and frontiers in South Asia: a working synthesis. J. World Prehist. 20, 1–86 (2006).

    Article 

    Google Scholar 

  • 25.

    Fuller, D. Q., Boivin, N. & Korisettar, R. Dating the Neolithic of South India: new radiometric evidence for key economic, social and ritual transformations. Antiquity 81, 755–778 (2007).

    Article 

    Google Scholar 

  • 26.

    Johansen, P. G. Landscape, monumental architecture, and ritual: a reconsideration of the South Indian ashmounds. J. Anthropol. Archaeol. 23, 309–330 (2004).

    Article 

    Google Scholar 

  • 27.

    Fuller, D. Q. Asia, South: Neolithic cultures. In Encyclopedia of Archaeology (ed. Pearsall, D.) 756–768 (Springer, 2008).

    Google Scholar 

  • 28.

    Asouti, E. & Fuller, D. Q. Trees and Woodlands of South India: Archaeological Perspectives (Left Coast Press, 2008).

    Google Scholar 

  • 29.

    Singh, G., Joshi, R. D., Chopra, S. K. & Singh, A. B. Late quaternary history of vegetation and climate of the Rajasthan desert, India. Philos. Trans. R. Soc. Lond. B Biol. Sci. 267, 467–501 (1974).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Singh, I. B. Quaternary palaeoenvironments of the Ganga plain and anthropogenic activity. Man Environ. 30, 1–35 (2005).

    Google Scholar 

  • 31.

    Clarkson, C. et al. The oldest and longest enduring microlithic sequence in India: 35 000 years of modern human occupation and change at the Jwalapuram locality 9 rockshelter. Antiquity 83, 326–348 (2009).

    Article 

    Google Scholar 

  • 32.

    Riedel, N. et al. Modern pollen vegetation relationships in a dry deciduous monsoon forest: a case study from Lonar Crater Lake, central India. Quat. Int. 371 (2015).

  • 33.

    Sarkar, S. et al. Monsoon source shifts during the drying mid-Holocene: biomarker isotope based evidence from the core ‘monsoon zone’ (CMZ) of India. Quat. Sci. Rev. 123, 144–157 (2015).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Chakraborty, A., Joshi, P. K., Ghosh, A. & Areendran, G. Assessing biome boundary shifts under climate change scenarios in India. Ecol. Indic. 34, 536–547 (2013).

    Article 

    Google Scholar 

  • 35.

    Rasquinha, D. N. & Sankaran, M. Modelling biome shifts in the Indian subcontinent under scenarios of future climate change. Curr. Sci. 111, 147–156 (2016).

    Article 

    Google Scholar 

  • 36.

    Berkelhammer, M. et al. An abrupt shift in the Indian monsoon 4000 years ago in Climates, Landscapes, and Civilizations (eds. Giosan, L. et al.) 75–88 (American Geophysical Union, 2013).

  • 37.

    Fleitmann, D. et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat. Sci. Rev. 26, 170–188 (2007).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Sinha, A. et al. A global context for megadroughts in monsoon Asia during the past millennium. Quat. Sci. Rev. 30, 47–62 (2011).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Berkelhammer, M. et al. Persistent multidecadal power of the Indian Summer Monsoon. Earth Planet. Sci. Lett. 290, 166–172 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 40.

    Laskar, A. H., Yadava, M. G., Ramesh, R., Polyak, V. J. & Asmerom, Y. A 4 kyr stalagmite oxygen isotopic record of the past Indian Summer Monsoon in the Andaman Islands. Geochem. Geophys. Geosyst. 14, 3555–3566 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Thamban, M., Kawahata, H. & Rao, V. P. Indian summer monsoon variability during the Holocene as recorded in sediments of the Arabian Sea: timing and implications. J. Oceanogr. 63, 1009–1020 (2007).

    Article 

    Google Scholar 

  • 42.

    Ponton, C. et al. Holocene aridification of India. Geophys. Res. Lett. 39, L03704 (2012).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Deblauwe, V. et al. Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics. Glob. Ecol. Biogeogr. 25, 443–454 (2016).

    Article 

    Google Scholar 

  • 44.

    Gaussen, H. et al. International Map of the Vegetation at Scale 1:1.000.000 (French Institute of Pondycherry, 1964).

    Google Scholar 

  • 45.

    ESRI Inc. ArcGIS Pro (ESRI Inc., 2019).

    Google Scholar 

  • 46.

    Saha, K. Tropical Circulation Systems and Monsoons (Springer, 2010).

    Book 

    Google Scholar 

  • 47.

    Goswami, B. N. South Asian monsoon. In Intraseasonal Variability in the Atmosphere–Ocean Climate System (eds. Lau, W. K. M. & Waliser, D. E.) 19–61 (Springer, 2005).

  • 48.

    Dabadghao, P. M. & Shankarnarayan, K. A. The Grass Cover of India (Indian Council of Agricultural Research, 1973).

    Google Scholar 

  • 49.

    Prasad, S. & Enzel, Y. Holocene paleoclimates of India. Quat. Res. 66, 442–453 (2006).

    Article 

    Google Scholar 

  • 50.

    Fleitmann, D. et al. Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman. Quat. Sci. Rev. 23, 935–945 (2004).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Kale, V. S. Fluvio–sedimentary response of the monsoon-fed Indian rivers to Late Pleistocene–Holocene changes in monsoon strength: reconstruction based on existing 14C dates. Quat. Sci. Rev. 26, 1610–1620 (2007).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 52.

    Prasad, S. et al. Prolonged monsoon droughts and links to Indo-Pacific warm pool: a Holocene record from Lonar Lake, central India. Earth Planet. Sci. Lett. 391, 171–182 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 53.

    Dixit, Y., Hodell, D. A. & Petrie, C. A. Abrupt weakening of the summer monsoon in northwest India 4100 yr ago. Geology https://doi.org/10.1130/G35236.1 (2014).

    Article 

    Google Scholar 

  • 54.

    Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Marzin, C. & Braconnot, P. Variations of Indian and African monsoons induced by insolation changes at 6 and 9.5 kyr BP. Clim. Dyn. 33, 215–231 (2009).

    Article 

    Google Scholar 

  • 56.

    Bush, R. T. & McInerney, F. A. Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 117, 161–179 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 57.

    Murphy, C. & Fuller, D. Q. The agriculture of early India. In Oxford Research Encyclopedia of Environmental Science (ed. Shugart, H.) (Oxford University Press, 2017).

    Google Scholar 

  • 58.

    Kumaran, N. K. P. et al. Vegetation response and landscape dynamics of Indian Summer Monsoon variations during Holocene: an eco-geomorphological appraisal of tropical evergreen forest subfossil logs. PLoS ONE 9, e93596 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 59.

    Singh, G., Wasson, R. J. & Agrawal, D. P. Vegetational and seasonal climatic changes since the last full glacial in the Thar Desert, northwestern India. Rev. Palaeobot. Palynol. 64, 351–358 (1990).

    Article 

    Google Scholar 

  • 60.

    Cole, M. M. The Savannas, Biogeography and Geobotany (Academic Press, 1986).

  • 61.

    Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Kodandapani, N., Cochrane, M. A. & Sukumar, R. A comparative analysis of spatial, temporal, and ecological characteristics of forest fires in seasonally dry tropical ecosystems in the Western Ghats, India. For. Ecol. Manag. 256, 607–617 (2008).

    Article 

    Google Scholar 

  • 63.

    Hegde, V., Chandran, M. D. S. & Gadgil, M. Variation in bark thickness in a tropical forest community of Western Ghats in India. Funct. Ecol. 12, 313–318 (1998).

    Article 

    Google Scholar 

  • 64.

    Stott, P. A., Goldammer, J. G. & Werner, W. L. The role of fire in the tropical lowland deciduous forests of Asia. In Fire in the Tropical Biota. Ecosystem Processes and Global Challenges (ed. Goldammer, J. G.) 32–44 (Springer, 1990).

  • 65.

    Murphy, C. & Fuller, D. Q. Seed coat thinning during horsegram (Macrotyloma uniflorum) domestication documented through synchrotron tomography of archaeological seeds. Sci. Rep. 7, 5369 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 66.

    Kingwell-Banham, E. & Fuller, D. Q. Shifting cultivators in South Asia: expansion, marginalisation and specialisation over the long term. Quat. Int. 249, 84–95 (2012).

    Article 

    Google Scholar 

  • 67.

    Kajale, M. Excavation at Inamgaon (Deccan College Postgraduate and Research Institute, 1988).

    Google Scholar 

  • 68.

    Shirvalkar, P. & Prasad, E. The archaeology of the Late Holocene on the Deccan Plateau (The Deccan Chalcolithic). In A Companion to South Asia in the Past (eds. Schug, G. R. & Walimbe, S. R.) 240-254 (John Wiley & Sons, 2016).

  • 69.

    Roberts, P. et al. Local diversity in settlement, demography and subsistence across the southern Indian Neolithic-Iron Age transition: site growth and abandonment at Sanganakallu-Kupgal. Archaeol. Anthropol. Sci. 8, 575–599 (2016).

    Article 

    Google Scholar 

  • 70.

    Nayar, T. S. Pollen Flora of Maharashtra State, India (Today & Tomorrow Printers and Publishers, 1990).

    Google Scholar 

  • 71.

    APSA Members. The Australasian Pollen and Spore Atlas V1.0 (Australian National University, 2007).

    Google Scholar 

  • 72.

    Tinner, W. & Hu, F. S. Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. Holocene 13, 499–505 (2003).

    ADS 
    Article 

    Google Scholar 

  • 73.

    Conedera, M. et al. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quat. Sci. Rev. 28, 555–576 (2009).

    ADS 
    Article 

    Google Scholar 

  • 74.

    Higuera, P., Peters, M., Brubaker, L. & Gavin, D. Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quat. Sci. Rev. 26, 1790–1809 (2007).

    ADS 
    Article 

    Google Scholar 

  • 75.

    McDermott, F. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quat. Sci. Rev. 23, 901–918 (2004).

    ADS 
    Article 

    Google Scholar 

  • 76.

    Baldini, J., McDermott, F. & Fairchild, I. Spatial variability in cave drip water hydrochemistry: implications for stalagmite paleoclimate records. Chem. Geol. 235, 390–404 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 77.

    Allchin, B. & Allchin, F. R. The Rise of Civilization in India and Pakistan (Cambridge University Press, 1982).

    Google Scholar 

  • 78.

    Shinde, V. S. New light on the origin, settlement system and decline of the Jorwe culture in the Deccan India. South Asian Stud. 5, 59–72 (1989).

    Article 

    Google Scholar 

  • 79.

    Shinde, V. S. Settlement pattern of the Savalda culture—the first farming community of Maharashtra. Bull. Deccan Coll. Res. Inst. 49–50, 417–426 (1990).

    Google Scholar 

  • 80.

    Paddayya, K. Investigations Into the Neolithic Culture of the Shorapur Doab, South India Vol. 3 (Brill, 1973).

    Google Scholar 


  • Source: Ecology - nature.com

    Seeking enhanced materials for nuclear reactors

    Concerns about reported harvests in European forests