in

Near-term climate change impacts on sub-national malaria transmission

  • 1.

    World Health Organization. Global Health Observatory (GHO) data: Malaria. (2018). Available at: https://www.who.int/gho/malaria/en/.

  • 2.

    World Health Organization. Climate Change and health. (2018). Available at: https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health. Accessed 31st December 2019.

  • 3.

    World Health Organization. World Malaria Report 2018. WHO/HTM/GM (World Health Organization, Geneva, 2018).

    Google Scholar 

  • 4.

    Aal, R. & Elshayeb, A. A. The effects of climate changes on the distribution and spread of malaria in Sudan. Am. J. Environ. Eng. 1, 15–20 (2012).

    Article  Google Scholar 

  • 5.

    Abeku, T. A. et al. Effects of meteorological factors on epidemic malaria in Ethiopia: a statistical modelling approach based on theoretical reasoning. Parasitology 128, 585–593 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Parham, P. E. & Michael, E. Modelling climate change and malaria transmission. Model. Parasite Transm. Control 673, 184–199 (2010).

    Article  Google Scholar 

  • 7.

    Gething, P. W. et al. Climate change and the global malaria recession. Nature 465, 342–345 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Zhai, J. X. et al. Development of an empirical model to predict malaria outbreaks based on monthly case reports and climate variables in Hefei, China, 1990–2011. Acta Trop. 178, 148–154 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Tompkins, A. M. & Thomson, M. C. Uncertainty in malaria simulations in the highlands of Kenya: relative contributions of model parameter setting, driving climate and initial condition errors. PLoS ONE 13, 16831 (2018).

    Article  CAS  Google Scholar 

  • 10.

    Moukam Kakmeni, F. M. et al. Spatial panorama of malaria prevalence in Africa under climate change and interventions scenarios. Int. J. Health Geogr. 17, 1–13 (2018).

    Article  Google Scholar 

  • 11.

    Hurtado, L. A., Calzada, J. E., Rigg, C. A., Castillo, M. & Chaves, L. F. Climatic fluctuations and malaria transmission dynamics, prior to elimination, in Guna Yala, República de Panamá. Malar. J. 17, 1–12 (2018).

    Article  Google Scholar 

  • 12.

    Ferrao, J. L., Niquisse, S., Mendes, J. M. & Painho, M. Mapping and modelling malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique. Int. J. Environ. Res. Public Health 15, 1–15 (2018).

    Article  Google Scholar 

  • 13.

    Semakula, H. M. et al. Prediction of future malaria hotspots under climate change in sub-Saharan Africa. Clim. Change 143, 415–428 (2017).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Imai, C. et al. Associations between malaria and local and global climate variability in five regions in Papua New Guinea. Trop. Med. Health 44, 1–9 (2016).

    Article  Google Scholar 

  • 15.

    Caminade, C. et al. Impact of climate change on global malaria distribution. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1302089111 (2014).

    Article  PubMed  Google Scholar 

  • 16.

    World Health Organization. World Malaria Report 2008 (World Health Organization, Geneva, 2008). ISBN 978 92 4 1564403

  • 17.

    Chizema-Kawesha, E. et al. Scaling up malaria control in Zambia: progress and impact 2005–2008. Am. J. Trop. Med. Hyg. 83, 480–488 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Mukonka, V. et al. Diagnostic approaches to malaria in Zambia, 2009–2014. Geospat. Health 10, 330 (2015).

    PubMed  Article  Google Scholar 

  • 19.

    Chanda, E. et al. Insecticide resistance and the future of malaria control in Zambia. PLoS ONE 6, 1–9 (2011).

    Article  CAS  Google Scholar 

  • 20.

    Kamuliwo, M. et al. The changing burden of malaria and association with vector control interventions in Zambia using district-level surveillance data, 2006–2011. Malar. J. 12, 1–9 (2013).

    Article  Google Scholar 

  • 21.

    Shimaponda-Mataa, N. M., Tembo-Mwase, E., Gebreslasie, M., Achia, T. N. O. & Mukaratirwa, S. Modelling the influence of temperature and rainfall on malaria incidence in four endemic provinces of Zambia using semiparametric Poisson regression. Acta Trop. 166, 81–91 (2017).

    PubMed  Article  Google Scholar 

  • 22.

    President’s Malaria Initiative. President’s Malaria Initiative Zambia Malaria Operational Plan FY 2019 (2019).

  • 23.

    Pinchoff, J. et al. Predictive malaria risk and uncertainty mapping in Nchelenge District, Zambia: evidence of widespread, persistent risk and implications for targeted interventions. Am. J. Trop. Med. Hyg. 93, 1260–1267 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Nkumama, I. N., O’Meara, W. P. & Osier, F. H. A. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol. 33, 128–140 (2017).

    PubMed  Article  Google Scholar 

  • 25.

    Bennett, A. et al. The relative contribution of climate variability and vector control coverage to changes in malaria parasite prevalence in Zambia 2006–2012. Parasites Vectors 9, 431 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Ashton, R. A., Prosnitz, D., Andrada, A., Herrera, S. & Yé, Y. Evaluating malaria programmes in moderate- and low-transmission settings: practical ways to generate robust evidence. Malar. J. https://doi.org/10.1186/s12936-020-03158-z (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Carpenter, C. C. J., Pearson, G. W., Mitchell, V. S. & Oaks, S. C. Jr. Malaria: Obstacles and Opportunities (National Academies Press, Washington, 1991).

    Google Scholar 

  • 28.

    Benelli, G., Jeffries, C. L. & Walker, T. Biological control of mosquito vectors: past, present, and future. Insects 7, 52 (2016).

    PubMed Central  Article  PubMed  Google Scholar 

  • 29.

    Ukawuba, I. et al. Using rainfall and temperature data in the evaluation of national malaria control programs in Africa. Am. J. Trop. Med. Hyg. 97, 32–45 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Martens, W. J., Jetten, T. H. & Focks, D. A. Sensitivity of malaria, schistosomiasis and dengue to global warming. Clim. Change 35, 145–156 (1997).

    Article  Google Scholar 

  • 31.

    Martens, W., Niessen, L. W., Rotmans, J., Jetten, T. H. & McMichael, A. J. Potential impact of global climate change on malaria risk. Environ. Health Perspect. 103, 458–464 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Van Lieshout, M., Kovats, R. S., Livermore, M. T. J. & Martens, P. Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Glob. Environ. Change 14, 87–99 (2004).

    Article  Google Scholar 

  • 33.

    Martens, P. et al. Climate change and future populations at risk of malaria. Glob. Environ. Change 9, S89–S107 (1999).

    Article  Google Scholar 

  • 34.

    Arab, A., Jackson, M. C. & Kongoli, C. Modelling the effects of weather and climate on malaria distributions in West Africa. Malar. J. 13, 126 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Central Statistical Office. 2010 census of population and housing: Population and Demographic Projections 2011–2035. 199 (2013).

  • 36.

    Maude, R. J., Mercado, C. E. G., Rowley, J., Ekapirat, N. & Dondorp, A. Estimating malaria disease burden in the Asia-Pacific. Wellcome Open Res. 4, 59 (2019).

    Article  Google Scholar 

  • 37.

    Van Buuren, S. Flexible Imputation of Missing Data (Chapman and Hall/CRC, Boca Raton, 2018).

    Google Scholar 

  • 38.

    Stekhoven, D. J. & Bühlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2011).

    PubMed  Article  CAS  Google Scholar 

  • 39.

    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Saha, S. et al. NCEP Climate Forecast System Version 2 (CFSv2) Monthly Products (2012). https://doi.org/10.5065/D69021ZF

  • 41.

    Smets, B., Jacobs, T., Swinnen, E., Toté, C. & Wolfs, D. Gio Global Land Component-Lot I “Operation of the Global Land Component”, Framework Service Contract N° 388533 (JRC), Product User Manual Normalized Difference Vegetation Index (NDVI). 2.2 (2018).

  • 42.

    Smets, B. et al. A 10-daily 1km NDVI from METOP-AVHRR. 10 (2013).

  • 43.

    Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 2.8–19. Vienna, Austria R Found. Retrieved from https://CRAN.R-project.org/package=rasterImage (2019).

  • 44.

    Colón-González, F. J., Tompkins, A. M., Biondi, R., Bizimana, J. P. & Namanya, D. B. Assessing the effects of air temperature and rainfall on malaria incidence: an epidemiological study across Rwanda and Uganda. Geospat. Health 11, 1–2 (2016).

    Article  Google Scholar 

  • 45.

    Suk, J. E. Climate change, malaria, and public health: accounting for socioeconomic contexts in past debates and future research. Wiley Interdiscip. Rev. Clim. Change 7, 551–568 (2016).

    Article  Google Scholar 

  • 46.

    Mohammadkhani, M., Khanjani, N., Bakhtiari, B. & Sheikhzadeh, K. The relation between climatic factors and malaria incidence in Kerman, South East of Iran. Parasite Epidemiol. Control 1, 205–210 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Okuneye, K. & Gumel, A. B. Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics. Math. Biosci. 287, 72–92 (2017).

    MathSciNet  PubMed  MATH  Article  Google Scholar 

  • 48.

    Krefis, A. C. et al. Modeling the relationship between precipitation and malaria incidence in children from a holoendemic area in Ghana. Am. J. Trop. Med. Hyg. 84, 285–291 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Abiodun, G. J., Maharaj, R., Witbooi, P. & Okosun, K. O. Modelling the influence of temperature and rainfall on the population dynamics of Anopheles arabiensis. Malar. J. 15, 1–15 (2016).

    Article  Google Scholar 

  • 50.

    Blanford, J. I. et al. Implications of temperature variation for malaria parasite development across Africa. Sci. Rep. 3, 1300 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Odongo-Aginya, E., Ssegwanyi, G., Kategere, P. & Vuzi, P. C. Relationship between malaria infection intensity and rainfall pattern in Entebbe peninsula, Uganda. Afr. Health Sci. 5, 238–245 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Darkoh, E. L., Larbi, J. A. & Lawer, E. A. A weather-based prediction model of malaria prevalence in Amenfi West District, Ghana. Malar. Res. Treat. https://doi.org/10.1155/2017/7820454 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 53.

    Kilian, A. H., Langi, P., Talisuna, A. & Kabagambe, G. Rainfall pattern, El Nino and malaria in Uganda. Trans. R. Soc. Trop. Med. Hyg. 93, 22–23 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Phung, D., Talukder, M. R. R., Rutherford, S. & Chu, C. A climate-based prediction model in the high-risk clusters of the Mekong Delta region, Vietnam: towards improving dengue prevention and control. Trop. Med. Int. Health 21, 1324–1333 (2016).

    PubMed  Article  Google Scholar 

  • 55.

    Wu, X., Lu, Y., Zhou, S., Chen, L. & Xu, B. Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ. Int. 86, 14–23 (2016).

    PubMed  Article  Google Scholar 

  • 56.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article  Google Scholar 

  • 57.

    Jiang, Z., Raymond, M., Shi, D. & DiStefano, C. Using a linear mixed-effect model framework to estimate multivariate generalizability theory parameters in R. Behav. Res. Methods https://doi.org/10.3758/s13428-020-01399-z (2020).

    Article  PubMed  Google Scholar 

  • 58.

    Napier, G., Lee, D., Robertson, C. & Lawson, A. A Bayesian space-time model for clustering areal units based on their disease trends. Biostatistics 00, 1–17 (2018).

    CAS  Google Scholar 

  • 59.

    Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian data analysis. Technometrics 46, 696 (2004).

    MATH  Google Scholar 

  • 60.

    Hamra, G., MacLehose, R. & Richardson, D. Markov chain monte carlo: an introduction for epidemiologists. Int. J. Epidemiol. 42, 627–634 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Lee, D., Rushworth, A. & Napier, G. Spatio-temporal areal unit modeling in R with conditional autoregressive priors using the CARBayesST package. J. Stat. Softw. 84, 1–39 (2018).

    CAS  Article  Google Scholar 

  • 62.

    Jaiswal, R. K., Lohani, A. K. & Tiwari, H. L. Statistical analysis for change detection and trend assessment in climatological parameters. Environ. Process. 2, 729–749 (2015).

    Article  Google Scholar 

  • 63.

    Wijngaard, J. B., Klein Tank, A. M. G. & Können, G. P. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Climatol. 23, 679–692 (2003).

    Article  Google Scholar 

  • 64.

    Hachigonta, S. & Reason, C. J. C. Interannual variability in dry and wet spell characteristics over Zambia. Clim. Res. 32, 49–62 (2006).

    Article  Google Scholar 

  • 65.

    Kaluba, P., Verbist, K. M. J., Cornelis, W. M. & Van Ranst, E. Spatial mapping of drought in Zambia using regional frequency analysis. Hydrol. Sci. J. https://doi.org/10.1080/02626667.2017.1343475 (2017).

    Article  Google Scholar 

  • 66.

    Waldman, K. B. et al. Cognitive biases about climate variability in smallholder farming systems in Zambia. Weather Clim. Soc. https://doi.org/10.1175/WCAS-D-18-0050.1 (2019).

    Article  Google Scholar 

  • 67.

    Musonda, B. Rainfall and Temperature Characteristic Over Zambia (2013).

  • 68.

    Mubanga, K. H. & Umar, B. B. Climate variability and change in Southern Zambia: 1910 to 2009 Kabwe. In 2014 International Conference on Intelligent Agriculture (ICOIA) (2015). https://doi.org/10.7763/IPCBEE

  • 69.

    Zambian Ministry of Health. Zambia National Malaria Indicator Survey 2006. 38–41 (2006).

  • 70.

    Zambian Ministry of Health. The Zambia National Malaria Indicator Survey 2008 (2008).

  • 71.

    Zambian Ministry of Health. Zambia National Malaria Indicator Survey 2012 (2012).

  • 72.

    Zambian Ministry of Health. Zambia Malaria Indicator Survey 2015 (2015).

  • 73.

    Zambian Ministry of Health. Zambia National Malaria Indicator Survey 2010. Malariasurveys.org (2010).

  • 74.

    Kilian, A. et al. Evidence for a useful life of more than three years for a polyester-based long-lasting insecticidal mosquito net in Western Uganda. Malar. J. 10, 299 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Tan, K. R. et al. A longitudinal study of the durability of long-lasting insecticidal nets in Zambia. Malar. J. 15, 1–12 (2016).

    Article  CAS  Google Scholar 

  • 76.

    Pulkki-Brännström, A.-M., Wolff, C., Brännström, N. & Skordis-Worrall, J. Cost and cost effectiveness of long-lasting insecticide-treated bed nets-a model-based analysis. Cost Eff. Resour. Alloc. 10, 5 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Stuckey, E. M. et al. Simulation of malaria epidemiology and control in the highlands of western Kenya. Malar. J. https://doi.org/10.1186/1475-2875-11-357 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 78.

    Carter, R., Mendis, K. N. & Roberts, D. Spatial targeting of interventions against malaria. Bull. World Health Organ. 78, 1401–1411 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 79.

    Bousema, T. et al. The impact of hotspot-targeted interventions on malaria transmission: study protocol for a cluster-randomized controlled trial. Trials 14, 36 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 80.

    Bousema, T. et al. The impact of hotspot-targeted interventions on malaria transmission in Rachuonyo South District in the Western Kenyan Highlands: a cluster-randomized controlled trial. PLoS Med. 13, e1001993 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 81.

    Walker, P. G. T., Griffin, J. T., Ferguson, N. M. & Ghani, A. C. Estimating the most efficient allocation of interventions to achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a modelling study. Lancet Glob. Health 4, e474–e484 (2016).

    PubMed  Article  Google Scholar 

  • 82.

    World Health Organisation (WHO). Malaria Prevention Works: Let’s Close the Gap (WHO, Geneva, 2017).

    Google Scholar 

  • 83.

    Kitojo, C. et al. Estimating malaria burden among pregnant women using data from antenatal care centres in Tanzania: a population-based study. Lancet Glob. Health 7, e1695–e1705 (2019).

    PubMed  Article  Google Scholar 

  • 84.

    Coldiron, M. E., Von Seidlein, L. & Grais, R. F. Seasonal malaria chemoprevention: successes and missed opportunities. Malar. J. https://doi.org/10.1186/s12936-017-2132-1 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 85.

    Ndiaye, J. L. A. et al. Seasonal malaria chemoprevention combined with community case management of malaria in children under 10 years of age, over 5months, in south-east senegal: a cluster randomized trial. PLoS Med. https://doi.org/10.1371/journal.pmed.1002762 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 86.

    Issiaka, D. et al. Impact of seasonal malaria chemoprevention on hospital admissions and mortality in children under 5 years of age in Ouelessebougou, Mali. Malar. J. https://doi.org/10.1186/s12936-020-03175-y (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 87.

    Lasry, E. et al. Seasonal malaria chemoprevention, three years of implementation. Am. J. Trop. Med. Hyg. 51, 523–532 (2015).

    Google Scholar 

  • 88.

    Cissé, B. et al. Effectiveness of seasonal malaria chemoprevention in children under ten years of age in senegal: a stepped-wedge cluster-randomised trial. PLoS Med. https://doi.org/10.1371/journal.pmed.1002175 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 89.

    Chandramohan, D. et al. Effect of adding azithromycin to seasonal malaria chemoprevention. N. Engl. J. Med. https://doi.org/10.1056/nejmoa1811400 (2019).

    Article  PubMed  Google Scholar 

  • 90.

    Ndiaye, J. L. A. et al. Impact of seasonal malaria chemoprevention after 3 years at scale in Southern Senegal. Am. J. Trop. Med. Hyg. 19, 103 (2017).

    Google Scholar 

  • 91.

    Braganza, K., Karoly, D. J. & Arblaster, J. M. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett. 31, 1–4 (2004).

    Article  Google Scholar 

  • 92.

    Roget, E. & Khan, V. M. Decadal differences of the diurnal temperature range in the Aral Sea region at the turn of the century. Tellus A Dyn. Meteorol. Oceanogr. 70, 1–12 (2018).

    Article  Google Scholar 

  • 93.

    Lubinda, J. The spatio-temporal impact of climate change on malaria transmission, control and elimination in southern Africa: the case of Zambia (Unpublished doctoral dissertation). (Ulster University, 2020).

  • 94.

    Chaves, L. F. & Koendraat, C. J. Climate change and highland malaria: fresh air for a hot debate the quarterly review of bilology. J. Chem. Inf. Model. 53, 1689–1699 (2010).

    Google Scholar 

  • 95.

    Murdock, C. C., Sternberg, E. D. & Thomas, M. B. Malaria transmission potential could be reduced with current and future climate change. Sci. Rep. 6, 27771 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 96.

    Paaijmans, K. P. et al. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl. Acad. Sci. 107, 15135–15139 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 97.

    Thomson, M. C. et al. Using rainfall and temperature data in the evaluation of national malaria control programs in Africa. Am. J. Trop. Med. Hyg. https://doi.org/10.4269/ajtmh.16-0696 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 98.

    Sena, L., Deressa, W. & Ali, A. Correlation of climate variability and malaria: a retrospective comparative study, Southwest Ethiopia. Ethiop. J. Health Sci. 25, 129 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 99.

    Kiszewski, A. E. & Teklehaimanot, A. A review of the clinical and epidemiologic burdens of epidemic malaria. Am. J. Trop. Med. Hyg. 71, 128–135 (2004).

    PubMed  Article  Google Scholar 

  • 100.

    Lobo, N. F. et al. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools. Sci. Rep. 5, 17952 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 101.

    Moyes, C. L. et al. Analysis-ready datasets for insecticide resistance phenotype and genotype frequency in African malaria vectors. Sci. Data https://doi.org/10.1038/s41597-019-0134-2 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 102.

    President’s Malaria Initiative. President’s Malaria Initiative 2016—Zambia. 1–45 (2016).

  • 103.

    Hancock, P. A. et al. Mapping trends in insecticide resistance phenotypes in African malaria vectors. PLoS Biol. https://doi.org/10.1371/journal.pbio.3000633 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 104.

    World Health Organization. INDOOR RESIDUAL SPRAYING: An Operational Manual for Indoor Residual Spraying (IRS) for Malaria Transmission Control and Elimination (WHO Press, Cleveland, 2015).

    Google Scholar 

  • 105.

    Mukonka, V. M. et al. High burden of malaria following scale-up of control interventions in Nchelenge District, Luapula Province, Zambia. Malar. J. 13, 153 (2014).

    PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets

    A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy)