in

Novel and disappearing climates in the global surface ocean from 1800 to 2100

  • 1.

    IPCC. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).

    Google Scholar 

  • 2.

    Dunne, J. P. et al. GFDL’s ESM2 global coupled climate-carbon earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).

    Article 
    ADS 

    Google Scholar 

  • 3.

    Jiang, L.-Q., Carter, B. R., Feely, R. A., Lauvset, S. K. & Olsen, A. Surface ocean pH and buffer capacity: Past, present and future. Nat. Sci. Rep. 9, 18624 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 4.

    Caldeira, K. & Wickett, M. E. Oceanography: Anthropogenic carbon and ocean pH. Nature 425, 365–365 (2003).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 5.

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 6.

    Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 7.

    Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. U. S. A. 104, 5738–5742 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 8.

    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).

    Article 

    Google Scholar 

  • 9.

    Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Article 
    ADS 

    Google Scholar 

  • 11.

    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 12.

    Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Bell, G. & Collins, S. Adaptation, extinction and global change. Evol. Appl. 1, 3–16 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Lancaster, L. T., Morrison, G. & Fitt, R. N. Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160046 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 16.

    Bruno, J. F. et al. Climate change threatens the world’s marine protected areas. Nat. Clim. Change 8, 499–503 (2018).

    Article 
    ADS 

    Google Scholar 

  • 17.

    Turk, D. et al. Time of emergence of surface ocean carbon dioxide trends in the North American coastal margins in support of ocean acidification observing system design. Front. Mar. Sci. 6, 91 (2019).

    Article 

    Google Scholar 

  • 18.

    Jiang, L.-Q. et al. Climatological distribution of aragonite saturation state in the global oceans. Global Biogeochem. Cycles 29, 1656–1673 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 19.

    Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 20.

    Feely, R. A., Doney, S. C. & Cooley, S. R. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22, 36–47 (2009).

    Article 

    Google Scholar 

  • 21.

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 22.

    Allen, A. P., Brown, J. H. & Gillooly, J. F. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297, 1545–1548 (2002).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 23.

    Donner, S. D. Coping with commitment: Projected thermal stress on coral reefs under different future scenarios. PLoS ONE 4, e5712 (2009).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 24.

    Walsh, P. J. & Louise Milligan, C. Coordination of metabolism and intracellular acid–base status: Ionic regulation and metabolic consequences. Can. J. Zool. 67, 2994–3004 (1989).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Nilsson, G. E. et al. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat. Clim. Change 2, 201–204 (2012).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 26.

    Clark, T. D. et al. Ocean acidification does not impair the behaviour of coral reef fishes. Nature 577, 370–375 (2020).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 27.

    Waldbusser, G. G. et al. A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity. Geophys. Res. Lett. 40, 2171–2176 (2013).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 28.

    Waldbusser, G. G. et al. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Change 5, 273–280 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 29.

    Dunne, J. P. et al. GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).

    Article 
    ADS 

    Google Scholar 

  • 30.

    Mahony, C. R., Cannon, A. J., Wang, T. & Aitken, S. N. A closer look at novel climates: New methods and insights at continental to landscape scales. Glob. Change Biol. https://doi.org/10.1111/gcb.13645 (2017).

    Article 

    Google Scholar 

  • 31.

    Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 32.

    Sanderson, B. M., O’Neill, B. C. & Tebaldi, C. What would it take to achieve the Paris temperature targets?. Geophys. Res. Lett. 43, 7133–7142 (2016).

    Article 
    ADS 

    Google Scholar 

  • 33.

    Friedlingstein, P. et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 7, 709–715 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 34.

    Steele, J. H., Brink, K. H. & Scott, B. E. Comparison of marine and terrestrial ecosystems: Suggestions of an evolutionary perspective influenced by environmental variation. ICES J. Mar. Sci. 76, 50–59 (2019).

    Article 

    Google Scholar 

  • 35.

    Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Kelly, M. W. & Hofmann, G. E. Adaptation and the physiology of ocean acidification. Funct. Ecol. 27, 980–990 (2013).

    Article 

    Google Scholar 

  • 37.

    Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 39.

    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).

    Google Scholar 

  • 40.

    Donelson, J. M., Salinas, S., Munday, P. L. & Shama, L. N. S. Transgenerational plasticity and climate change experiments: Where do we go from here?. Glob. Change Biol. 24, 13–34 (2018).

    Article 
    ADS 

    Google Scholar 

  • 41.

    Ross, P. M., Parker, L. & Byrne, M. Transgenerational responses of molluscs and echinoderms to changing ocean conditions. ICES J. Mar. Sci. 73, 537–549 (2016).

    Article 

    Google Scholar 

  • 42.

    Eirin-Lopez, J. M. & Putnam, H. M. Marine environmental epigenetics. Ann. Rev. Mar. Sci. 11, 335–368 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 43.

    Baumann, H. & Smith, E. M. Quantifying metabolically driven pH and oxygen fluctuations in US nearshore habitats at diel to interannual time scales. Estuaries Coasts 41, 1102–1117 (2018).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Chan, F. et al. Persistent spatial structuring of coastal ocean acidification in the California Current System. Sci. Rep. 7, 1–7 (2017).

    Article 
    CAS 

    Google Scholar 

  • 45.

    Steinacher, M. et al. Projected 21st century decrease in marine productivity: A multi-model analysis. Biogeosciences 7, 27 (2010).

    Article 

    Google Scholar 

  • 46.

    Gruber, N. Warming up, turning sour, losing breath: Ocean biogeochemistry under global change. Philos. Trans. A Math. Phys. Eng. Sci. 369, 1980–1996 (2011).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 47.

    Wang, D., Gouhier, T. C., Menge, B. A. & Ganguly, A. R. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518, 390–394 (2015).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 48.

    Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 49.

    Bopp, L. et al. Potential impact of climate change on marine export production. Global Biogeochem. Cycles 15, 81–99 (2001).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 50.

    Doney, S. C. et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4, 11–37 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. U. S. A. 105, 15452–15457 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 52.

    Curry, R., Dickson, B. & Yashayaev, I. A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426, 826–829 (2003).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 53.

    Briggs, J. C. Marine centres of origin as evolutionary engines. J. Biogeogr. 30, 1–18 (2003).

    Article 

    Google Scholar 

  • 54.

    Bowen, B. W., Rocha, L. A., Toonen, R. J., Karl, S. A. & ToBo Laboratory. The origins of tropical marine biodiversity. Trends Ecol. Evol. 28, 359–366 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Burke, L. M., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited in the Coral Triangle (World Resources Institute, 2012).

    Google Scholar 

  • 56.

    Boyd, P. W., Lennartz, S. T., Glover, D. M. & Doney, S. C. Biological ramifications of climate-change-mediated oceanic multi-stressors. Nat. Clim. Chang. 5, 71 (2014).

    Article 
    ADS 

    Google Scholar 

  • 57.

    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 58.

    Bakker, D. C. E. et al. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data 8, 383–413 (2016).

    Article 
    ADS 

    Google Scholar 

  • 59.

    Lauvset, S. K. et al. A new global interior ocean mapped climatology: The 1 × 1 GLODAP version 2. Earth Syst. Sci. Data 8, 325–340 (2016).

    Article 
    ADS 

    Google Scholar 

  • 60.

    Carter, B. R. et al. Updated methods for global locally interpolated estimation of alkalinity, pH, and nitrate. Limnol. Oceanogr. Methods 16, 119–131 (2017).

    Article 
    CAS 

    Google Scholar 

  • 61.

    Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Dickson, A. G. Standard potential of the reaction: AgCl (s) + 12H2 (g) = Ag (s) + HCl (aq), and and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Perez, F. F. & Fraga, F. Association constant of fluoride and hydrogen ions in seawater. Mar. Chem. 21, 161–168 (1987).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Uppström, L. R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res. Oceanogr. Abstr. 21, 161–162 (1974).

    Article 
    ADS 

    Google Scholar 

  • 65.

    van Heuven, S. et al. MATLAB Program Developed for CO2 System Calculations (Carbon Dioxide Information Analysis Center, 2011). https://doi.org/10.3334/cdiac/otg.co2sys_matlab_v1.1

    Book 

    Google Scholar 

  • 66.

    Lewis, E., Wallace, D. & Allison, L. J. Program Developed for CO2 System Calculations (ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U. S. Department of Energy, 1998). https://doi.org/10.2172/639712

  • 67.

    Orr, J. C., Epitalon, J.-M., Dickson, A. G. & Gattuso, J.-P. Routine uncertainty propagation for the marine carbon dioxide system. Mar. Chem. 207, 84–107 (2018).

    CAS 
    Article 

    Google Scholar 

  • 68.

    IPCC. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2014).

    Google Scholar 

  • 69.

    NOAA. Extended Reconstructed Sea Surface Temperature (ERSST.v5) (National Centers for Environmental Information, 2017). www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst

  • 70.

    Takahashi, T. et al. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Mar. Chem. 164, 95–125 (2014).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Locarnini, R. A. et al. World Ocean Atlas 2013, Volume 1: Temperature (NOAA Atlas NESDIS 73, 2013).

    Google Scholar 

  • 72.

    Barth, A., Beckers, J.-M., Troupin, C., Alvera-Azcárate, A. & Vandenbulcke, L. Divand-1.0: n-dimensional variational data analysis for ocean observations. Geosci. Model Dev. 7, 225–241 (2014).

    Article 
    ADS 

    Google Scholar 

  • 73.

    HOTS, station ALOHA. HOTS (Hawaii Ocean Time Series), station ALOHA. http://hahana.soest.hawaii.edu/hot/hot-dogs/bextraction.html (2018).

  • 74.

    UNH_CML. CML (University of New Hampshire Coastal Marine Laboratory), Salisbury, J. UNH CML Station—Coastal Marine Laboratory. http://www.neracoos.org/erddap/tabledap/UNH_CML.html (2019).

  • 75.

    BBH. BBH (Boothbay Harbor) Sea Water Temperature Record in Maine. https://www.maine.gov/dmr/science-research/weather-tides/bbhenv.html (2019).

  • 76.

    Sutton, A. J. et al. High-Resolution Ocean and Atmosphere pCO2 Time-Series Measurements from Mooring NH_70W_43N (NCEI Accession 0115402). (NOAA (National Oceanic and Atmospheric Administration) National Centers for Environmental Information, 2014). https://www.nodc.noaa.gov/archive/arc0062/0115402/8.8/data/0-data/


  • Source: Ecology - nature.com

    The boiling crisis — and how to avoid it

    A statistics-based reconstruction of high-resolution global terrestrial climate for the last 800,000 years