McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. 110, 3229–3236 (2013).
Google Scholar
Horn, M. Chlamydiae as symbionts in eukaryotes. Annu. Rev. Microbiol. 62, 113–131 (2008).
Google Scholar
Taylor-Brown, A., Vaughan, L., Greub, G., Timms, P. & Polkinghorne, A. Twenty years of research into Chlamydia-like organisms: a revolution in our understanding of the biology and pathogenicity of members of the phylum Chlamydiae. Pathog. Dis. 73, 1–15 (2015).
Google Scholar
Wagner, M. & Horn, M. The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr. Opin. Biotechnol. 17, 241–249 (2006).
Google Scholar
Rivas-Marín, E. & Devos, D. P. The Paradigms They Are a-Changin’: past, present and future of PVC bacteria research. Antonie van. Leeuwenhoek 111, 785–799 (2018).
Google Scholar
Elwell, C., Mirrashidi, K. & Engel, J. Chlamydia cell biology and pathogenesis. Nat. Rev. Microbiol. 14, 385–400 (2016).
Google Scholar
Collingro, A., Köstlbacher, S. & Horn, M. Chlamydiae in the Environment. Trends Microbiol. 28, 877–888 (2020).
Google Scholar
Lagkouvardos, I. et al. Integrating metagenomic and amplicon databases to resolve the phylogenetic and ecological diversity of the Chlamydiae. ISME J. 8, 115–125 (2014).
Google Scholar
Greub, G. & Raoult, D. Microorganisms resistant to free-living amoebae. Clin. Microbiol. Rev. 17, 413–433 (2004).
Google Scholar
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. 115, 6506–6511 (2018).
Google Scholar
Taylor-Brown, A., Madden, D. & Polkinghorne, A. Culture-independent approaches to chlamydial genomics. Micro. Genom. 4, e000145 (2018).
Sixt, B. S. & Valdivia, R. H. Molecular Genetic Analysis of Chlamydia Species. Annu. Rev. Microbiol. 70, 179–198 (2016).
Google Scholar
Bachmann, N. L., Polkinghorne, A. & Timms, P. Chlamydia genomics: providing novel insights into chlamydial biology. Trends Microbiol. 22, 464–472 (2014).
Google Scholar
Subtil, A. & Dautry-Varsat, A. Chlamydia: five years A.G. (after genome). Curr. Opin. Microbiol. 7, 85–92 (2004).
Google Scholar
Collingro, A. et al. Unity in Variety—The Pan-Genome of the Chlamydiae. Mol. Biol. Evol. 28, 3253–3270 (2011).
Google Scholar
Taylor-Brown, A. et al. Metagenomic Analysis of Fish-Associated Ca. Parilichlamydiaceae Reveals Striking Metabolic Similarities to the Terrestrial Chlamydiaceae. Genom. Biol. Evol. 10, 2587–2595 (2018).
Google Scholar
Baker, B. J., Lazar, C. S., Teske, A. P. & Dick, G. J. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome 3, 14 (2015).
Google Scholar
Collingro, A. et al. Unexpected genomic features in widespread intracellular bacteria: evidence for motility of marine chlamydiae. ISME J. 11, 2334–2344 (2017).
Google Scholar
Dharamshi, J. E. et al. Marine Sediments Illuminate Chlamydiae Diversity and Evolution. Curr. Biol. 30, 1032–1048.e7 (2020).
Google Scholar
Pillonel, T., Bertelli, C. & Greub, G. Environmental Metagenomic Assemblies Reveal Seven New Highly Divergent Chlamydial Lineages and Hallmarks of a Conserved Intracellular Lifestyle. Front. Microbiol. 9, 79 (2018).
Google Scholar
Taylor-Brown, A., Bachmann, N. L., Borel, N. & Polkinghorne, A. Culture-independent genomic characterisation of Candidatus Chlamydia sanzinia, a novel uncultivated bacterium infecting snakes. BMC Genom. 17, 710 (2016).
Google Scholar
Taylor-Brown, A. et al. Culture-independent genomics of a novel chlamydial pathogen of fish provides new insight into host-specific adaptations utilized by these intracellular bacteria. Environ. Microbiol. 19, 1899–1913 (2017).
Google Scholar
Stairs, C. W. et al. Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. Sci. Adv. 6, eabb7258 (2020).
Google Scholar
Brockhurst, M. A. et al. The Ecology and Evolution of Pangenomes. Curr. Biol. 29, R1094–R1103 (2019).
Google Scholar
Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2020).
Google Scholar
Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).
Google Scholar
Wu, D. et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462, 1056–1060 (2009).
Google Scholar
Chen, I. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666-D677 (2019).
Schulz, F. et al. Towards a balanced view of the bacterial tree of life. Microbiome 5, 140 (2017).
Google Scholar
Subtil, A., Collingro, A. & Horn, M. Tracing the primordial Chlamydiae: extinct parasites of plants? Trends Plant Sci. 19, 36–43 (2014).
Google Scholar
Cenci, U. et al. Biotic Host-Pathogen Interactions As Major Drivers of Plastid Endosymbiosis. Trends Plant Sci. 22, 316–328 (2017).
Google Scholar
Blair, P. M. et al. Exploration of the Biosynthetic Potential of the Populus Microbiome. mSystems 3, e00045-18 (2018).
Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).
Google Scholar
Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).
Google Scholar
Miele, V., Penel, S. & Duret, L. Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinforma. 12, 116 (2011).
Google Scholar
Abby, S. S. & Rocha, E. P. C. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet. 8, e1002983 (2012).
Google Scholar
Peters, J., Wilson, D. P., Myers, G., Timms, P. & Bavoil, P. M. Type III secretion à la Chlamydia. Trends Microbiol. 15, 241–251 (2007).
Google Scholar
Archuleta, T. L. et al. The Chlamydia effector chlamydial outer protein N (CopN) sequesters tubulin and prevents microtubule assembly. J. Biol. Chem. 286, 33992–33998 (2011).
Google Scholar
Verma, A. & Maurelli, A. T. Identification of two eukaryote-like serine/threonine kinases encoded by Chlamydia trachomatis serovar L2 and characterization of interacting partners of Pkn1. Infect. Immun. 71, 5772–5784 (2003).
Google Scholar
Omsland, A., Sixt, B. S., Horn, M. & Hackstadt, T. Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiol. Rev. 38, 779–801 (2014).
Google Scholar
Schwöppe, C., Winkler, H. H. & Neuhaus, H. E. Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC). J. Bacteriol. 184, 2108–2115 (2002).
Google Scholar
Tjaden, J. et al. Two nucleotide transport proteins in Chlamydia trachomatis, one for net nucleoside triphosphate uptake and the other for transport of energy. J. Bacteriol. 181, 1196–1202 (1999).
Google Scholar
Schmitz-Esser, S. et al. ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to Chlamydiae and Rickettsiae. J. Bacteriol. 186, 683–691 (2004).
Google Scholar
Haferkamp, I. et al. Tapping the nucleotide pool of the host: novel nucleotide carrier proteins of Protochlamydia amoebophila. Mol. Microbiol. 60, 1534–1545 (2006).
Google Scholar
Rosario, C. J. & Tan, M. The early gene product EUO is a transcriptional repressor that selectively regulates promoters of Chlamydia late genes. Mol. Microbiol. 84, 1097–1107 (2012).
Google Scholar
Belland, R. J. et al. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc. Natl Acad. Sci. U. S. A. 100, 8478–8483 (2003).
Google Scholar
Kislyuk, A. O., Haegeman, B., Bergman, N. H. & Weitz, J. S. Genomic fluidity: an integrative view of gene diversity within microbial populations. BMC Genom. 12, 32 (2011).
Google Scholar
McInerney, J. O., McNally, A. & O’Connell, M. J. Why prokaryotes have pangenomes. Nat. Microbiol. 2, 17040 (2017).
Google Scholar
Wang, Z. & Wu, M. Comparative Genomic Analysis of Acanthamoeba Endosymbionts Highlights the Role of Amoebae as a ‘Melting Pot’ Shaping the Rickettsiales Evolution. Genom. Biol. Evol. 9, 3214–3224 (2017).
Google Scholar
Moliner, C., Fournier, P.-E. & Raoult, D. Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol. Rev. 34, 281–294 (2010).
Google Scholar
Bertelli, C. et al. Sequencing and characterizing the genome of Estrella lausannensis as an undergraduate project: training students and biological insights. Front. Microbiol. 6, 101 (2015).
Google Scholar
Bertelli, C., Goesmann, A. & Greub, G. Criblamydia sequanensis Harbors a Megaplasmid Encoding Arsenite Resistance. Genom. Announc. 2, e00949–14 (2014).
Google Scholar
Köstlbacher, S., Collingro, A., Halter, T., Domman, D. & Horn, M. Coevolving Plasmids Drive Gene Flow and Genome Plasticity in Host-Associated Intracellular Bacteria. Curr. Biol. 31, 346–357.e3 (2021).
Google Scholar
Bertelli, C. et al. CRISPR System Acquisition and Evolution of an Obligate IntracellularChlamydia-Related Bacterium. Genom. Biol. Evol. 8, 2376–2386 (2016).
Google Scholar
Benamar, S. et al. Developmental Cycle and Genome Analysis of Protochlamydia massiliensis sp. nov. a New Species in the Parachlamydiacae Family. Front. Cell. Infect. Microbiol. 7, 385 (2017).
Panwar, P. et al. Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community. Microbiome 8, 116 (2020).
Google Scholar
Venn, A. A., Loram, J. E. & Douglas, A. E. Photosynthetic symbioses in animals. J. Exp. Bot. 59, 1069–1080 (2008).
Google Scholar
Cavanaugh, C. M. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature 302, 58–61 (1983).
Google Scholar
Hu, J., Jin, K., He, Z.-G. & Zhang, H. Citrate lyase CitE in Mycobacterium tuberculosis contributes to mycobacterial survival under hypoxic conditions. PLoS ONE 15, e0230786 (2020).
Google Scholar
Kantor, R. S. et al. Genome-Resolved Meta-Omics Ties Microbial Dynamics to Process Performance in Biotechnology for Thiocyanate Degradation. Environ. Sci. Technol. 51, 2944–2953 (2017).
Google Scholar
Wang, Z. et al. A new method for rapid genome classification, clustering, visualization, and novel taxa discovery from metagenome. https://doi.org/10.1101/812917.
Sabehi, G. et al. New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Biol. 3, e273 (2005).
Google Scholar
Croitoru, K. Faculty Opinions recommendation of Environmental genome shotgun sequencing of the Sargasso Sea. Faculty Opin.—Post-Publ. Peer Rev. Biomed. Lit. (2014). https://doi.org/10.3410/f.1017813.793496370.
Gómez-Consarnau, L. et al. Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol. 8, e1000358 (2010).
Google Scholar
Omsland, A., Sager, J., Nair, V., Sturdevant, D. E. & Hackstadt, T. Developmental stage-specific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium. Proc. Natl Acad. Sci. 109, 19781–19785 (2012).
Google Scholar
Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes—a 2019 update. Nucleic Acids Res. 48, D445–D453 (2020).
Google Scholar
Glasemacher, J., Bock, A. K., Schmid, R. & Schønheit, P. Purification and Properties of acetyl-CoA Synthetase (ADP-forming), an Archaeal Enzyme of Acetate Formation and ATP Synthesis, From the Hyperthermophile Pyrococcus Furiosus. Eur. J. Biochem. 244, 561–567 (1997).
Google Scholar
Stairs, C. W., Leger, M. M. & Roger, A. J. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140326 (2015).
Google Scholar
Leger, M. M., Gawryluk, R. M. R., Gray, M. W. & Roger, A. J. Evidence for a hydrogenosomal-type anaerobic ATP generation pathway in Acanthamoeba castellanii. PLoS ONE 8, e69532 (2013).
Google Scholar
Novák, L. et al. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes. BMC Evol. Biol. 16, 197 (2016).
Google Scholar
Benoit, S. L., Maier, R. J., Sawers, R. G. & Greening, C. Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Microbiol. Mol. Biol. Rev. 84, e00092–19 (2020).
Google Scholar
Søndergaard, D., Pedersen, C. N. S. & Greening, C. HydDB: a web tool for hydrogenase classification and analysis. Sci. Rep. 6, 34212 (2016).
Google Scholar
Kleiner, M. et al. Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use. Proc. Natl Acad. Sci. U. S. A. 109, E1173–E1182 (2012).
Google Scholar
Schut, G. J. & Adams, M. W. W. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J. Bacteriol. 191, 4451–4457 (2009).
Google Scholar
Greening, C. et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 10, 761–777 (2016).
Google Scholar
Hou, S. et al. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol. Direct 3, 26 (2008).
Google Scholar
Berney, M., Greening, C., Conrad, R., Jacobs, W. R. Jr & Cook, G. M. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. Proc. Natl Acad. Sci. U. S. A. 111, 11479–11484 (2014).
Google Scholar
Kaji, M. et al. The hydA gene encoding the H(2)-evolving hydrogenase of Clostridium perfringens: molecular characterization and expression of the gene. FEMS Microbiol. Lett. 181, 329–336 (1999).
Google Scholar
Lindmark, D. G., Muller, M. & Shio, H. Hydrogenosomes in Trichomonas vaginalis. J. Parasitol. 61, 552 (1975).
Google Scholar
Edgar, R. C. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 34, 2371–2375 (2018).
Google Scholar
Lagkouvardos, I. et al. IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci. Rep. 6, 33721 (2016).
Google Scholar
Stride, M. C. et al. Molecular characterization of ‘Candidatus Parilichlamydia carangidicola,’ a novel Chlamydia-like epitheliocystis agent in yellowtail kingfish, Seriola lalandi (Valenciennes), and the proposal of a new family, ‘Candidatus Parilichlamydiaceae’ fam. nov. (order Chlamydiales). Appl. Environ. Microbiol. 79, 1590–1597 (2013).
Google Scholar
Draghi, A. et al. Characterization of ‘Candidatus Piscichlamydia salmonis’ (Order Chlamydiales), a Chlamydia-Like Bacterium Associated With Epitheliocystis in Farmed Atlantic Salmon (Salmo salar). J. Clin. Microbiol. 42, 5286–5297 (2004).
Google Scholar
Neuendorf, E. et al. Chlamydia caviae infection alters abundance but not composition of the guinea pig vaginal microbiota. Pathog. Dis. 73, ftv019 (2015).
Kelly, J. et al. Composition and diversity of mucosa-associated microbiota along the entire length of the pig gastrointestinal tract; dietary influences. Environ. Microbiol. 19, 1425–1438 (2017).
Google Scholar
Kelly, M. S. et al. The Nasopharyngeal Microbiota of Children With Respiratory Infections in Botswana. Pediatr. Infect. Dis. J. 36, e211–e218 (2017).
Google Scholar
Liechty, E. R. et al. The levonorgestrel-releasing intrauterine system is associated with delayed endocervical clearance of Chlamydia trachomatis without alterations in vaginal microbiota. Pathog. Dis. 73, ftv070 (2015).
Google Scholar
Ganz, H. H. et al. Community-Level Differences in the Microbiome of Healthy Wild Mallards and Those Infected by Influenza A Viruses. mSystems 2, e00188–16 (2017).
Google Scholar
Pizzetti, I. et al. Chlamydial seasonal dynamics and isolation of ‘Candidatus Neptunochlamydia vexilliferae’ from a Tyrrhenian coastal lake. Environ. Microbiol. 18, 2405–2417 (2016).
Google Scholar
Nylund, A. et al. Genotyping of Candidatus Syngnamydia salmonis (chlamydiales; Simkaniaceae) co-cultured in Paramoeba perurans (amoebozoa; Paramoebidae). Arch. Microbiol. 200, 859–867 (2018).
Google Scholar
Kahane, S., Gonen, R., Sayada, C., Elion, J. & Friedman, M. G. Description and partial characterization of a new Chlamydia-like microorganism. FEMS Microbiol. Lett. 109, 329–333 (1993).
Google Scholar
Vouga, M., Baud, D. & Greub, G. Simkania negevensis, an insight into the biology and clinical importance of a novel member of the Chlamydiales order. Crit. Rev. Microbiol. 43, 62–80 (2017).
Google Scholar
Ziegler, M. et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 10, 3092 (2019).
Google Scholar
Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).
Google Scholar
Torres-Beltrán, M. et al. A compendium of geochemical information from the Saanich Inlet water column. Sci. Data 4, 170159 (2017).
Google Scholar
Hawley, A. K. et al. A compendium of multi-omic sequence information from the Saanich Inlet water column. Sci. Data 4, 170160 (2017).
Google Scholar
Orsi, W., Song, Y. C., Hallam, S. & Edgcomb, V. Effect of oxygen minimum zone formation on communities of marine protists. ISME J. 6, 1586–1601 (2012).
Google Scholar
Köstlbacher, S. et al. Draft Genome Sequences of Bacterium STE3 and sp. Strain AcF84. Endosymbionts spp. Microbiol. Resour. Announc. 9, e00220–e00220 (2020).
Google Scholar
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
Google Scholar
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genom. Res. 25, 1043–1055 (2015).
Google Scholar
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
Google Scholar
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).
Google Scholar
Hendrickx, F. et al. A masculinizing supergene underlies an exaggerated male reproductive morph in a spider. https://doi.org/10.1101/2021.02.09.430505.
Philippe, H. et al. Mitigating Anticipated Effects of Systematic Errors Supports Sister-Group Relationship between Xenacoelomorpha and Ambulacraria. Curr. Biol. 29, 1818–1826.e6 (2019).
Google Scholar
Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).
Google Scholar
Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008).
Google Scholar
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
Google Scholar
Quang, L. S., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24, 2317–2323 (2008).
Google Scholar
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 35, 518–522 (2018).
Google Scholar
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
Google Scholar
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).
Google Scholar
Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).
Google Scholar
Wang, H.-C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling Site Heterogeneity with Posterior Mean Site Frequency Profiles Accelerates Accurate Phylogenomic Estimation. Syst. Biol. 67, 216–235 (2018).
Google Scholar
Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinforma. 11, 538 (2010).
Google Scholar
Hausmann, B. et al. Peatland Acidobacteria with a dissimilatory sulfur metabolism. ISME J. 12, 1729–1742 (2018).
Google Scholar
Konstantinidis, K. T., Rosselló-Móra, R. & Amann, R. Uncultivated microbes in need of their own taxonomy. ISME J. 11, 2399–2406 (2017).
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016).
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genom. Res. 13, 2498–2504 (2003).
Google Scholar
Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).
Google Scholar
Huerta-Cepas, J. et al. Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).
Google Scholar
Maistrenko, O. M. et al. Disentangling the impact of environmental and phylogenetic constraints on prokaryotic within-species diversity. ISME J. 14, 1247–1259 (2020).
Google Scholar
Snipen, L. & Liland, K. H. micropan: an R-package for microbial pan-genomics. BMC Bioinforma. 16, 79 (2015).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).
Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc.: Ser. B (Methodol.) 57, 289–300 (1995).
Google Scholar
Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 428, 726–731 (2016).
Google Scholar
Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).
Google Scholar
El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).
Google Scholar
Haft, D. H., Selengut, J. D. & White, O. The TIGRFAMs database of protein families. Nucleic Acids Res. 31, 371–373 (2003).
Google Scholar
Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).
Google Scholar
Guy, L., Kultima, J. R. & Andersson, S. G. E. genoPlotR: comparative gene and genome visualization in R. Bioinformatics 26, 2334–2335 (2010).
Google Scholar
Abby, S. S. & Rocha, E. P. C. Identification of Protein Secretion Systems in Bacterial Genomes Using MacSyFinder. Methods Mol. Biol. 1615, 1–21 (2017).
Google Scholar
Abby, S. S. et al. Identification of protein secretion systems in bacterial genomes. Sci. Rep. 6, 1–14 (2016).
Google Scholar
Couvin, D. et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46, W246–W251 (2018).
Google Scholar
Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).
Google Scholar
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).
Google Scholar
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
Google Scholar
Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).
Google Scholar
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
Google Scholar
Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).
Google Scholar
Source: Ecology - nature.com