in

Passing rail traffic reduces bat activity

[adace-ad id="91168"]
  • 1.

    Dulac, J. Global land transport infrastructure requirements. (2013).

  • 2.

    Baker, C. J., Chapman, L., Quinn, A. & Dobney, K. Climate change and the railway industry: A review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224, 519–528 (2010).

    Article 

    Google Scholar 

  • 3.

    IEA. The Future of Rail – Opportunities for energy and the environment. (2019). doi:https://doi.org/10.1787/9789264312821-en

  • 4.

    Popp, J. N. & Boyle, S. P. Railway ecology: Underrepresented in science?. Basic Appl. Ecol. 19, 84–93 (2017).

    Article 

    Google Scholar 

  • 5.

    IRF. IRF World Road Statistics 2019. (2019).

  • 6.

    UIC. Railisa UIC Statistics. (2019).

  • 7.

    Van Der Ree, R., Smith, D. J. & Grilo, C. Handbook of Road Ecology (Wiley, 2015). https://doi.org/10.1002/9781118568170.

    Book 

    Google Scholar 

  • 8.

    Railway Ecology. (Springer Open, 2017). https://doi.org/10.1007/978-3-319-57496-7_19

  • 9.

    Barrientos, R. & Borda-de-Água, L. Railways as Barriers for Wildlife: Current Knowledge. in Railway Ecology (eds. Borda-de-Água, L., Barrientos, R., Beja, P. & Pereira, H. M.) 43–64 (Springer Open, 2017).

  • 10.

    Jackson, N. D. & Fahrig, L. Relative effects of road mortality and decreased connectivity on population genetic diversity. Biol. Conserv. 144, 3143–3148 (2011).

    Article 

    Google Scholar 

  • 11.

    van der Grift, E. Mammals and railroads: impacts and management implications. Lutra 42, 77–98 (1999).

    Google Scholar 

  • 12.

    Heske, E. J. Blood on the Tracks: Track Mortality and Scavenging Rate in Urban Nature Preserves. Urban Nat. 2, 1–13 (2015).

    Google Scholar 

  • 13.

    Huber, D., Kusak, J. & Frkovic, A. Traffic kills of brown bears in Gorski kotar, Croatia. Ursus 10, 167–171 (1998).

    Google Scholar 

  • 14.

    Waller, J. S. & Servheen, C. Effects of transportation infrastructure on grizzly bears in Northwestern Montana. J. Wildl. Manag. 69, 985–1000 (2005).

    Article 

    Google Scholar 

  • 15.

    Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 14, 18–30 (2000).

    Article 

    Google Scholar 

  • 16.

    Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: An empirical review and synthesis. Ecol. Soc. 14, 21 (2009).

    Article 

    Google Scholar 

  • 17.

    Kušta, T., Keken, Z., Ježek, M. & Kůta, Z. Effectiveness and costs of odor repellents in wildlife-vehicle collisions: A case study in Central Bohemia, Czech Republic. Transp. Res. Part D Transp. Environ. 38, 1–5 (2015).

    Article 

    Google Scholar 

  • 18.

    UIC. Railway noise in Europe – State of the art report. (2016).

  • 19.

    UIC. Railway induced vibration – State of the art report. (2017).

  • 20.

    Frost, M. & Ison, S. Comparison of noise impacts from urban transport. Proc. Inst. Civ. Eng. Transp. 160, 165–172 (2007).

    Google Scholar 

  • 21.

    Thompson, D. Railway Noise and Vibration-Mechanisms (Elsevier Ltd, 2009).

    Google Scholar 

  • 22.

    Vandevelde, J. C., Bouhours, A., Julien, J. F., Couvet, D. & Kerbiriou, C. Activity of European common bats along railway verges. Ecol. Eng. 64, 49–56 (2014).

    Article 

    Google Scholar 

  • 23.

    Barrientos, R., Ascensão, F., Beja, P., Pereira, H. M. & Borda-de-Água, L. Railway ecology vs. road ecology: similarities and differences. Eur. J. Wildl. Res. 65, (2019).

  • 24.

    Dorsey, B., Olsson, M. & Rew, L. J. Ecological effects of railways on wildlife. Handb. Road Ecol. https://doi.org/10.1002/9781118568170.ch26 (2015).

    Article 

    Google Scholar 

  • 25.

    Mickleburgh, S. P., Hutson, A. M. & Racey, P. A. A review of the global conservation status of bats. Oryx 36, 18–34 (2002).

    Article 

    Google Scholar 

  • 26.

    Ávila-Flores, R., Bolaina-Badal, A. L., Gallegos-Ruiz, A. & Sánchez-Gómez, W. S. Use of linear features by the common vampire bat (Desmodus rotundus) in a tropical cattle-ranching landscape. Therya 10, 229–234 (2019).

    Article 

    Google Scholar 

  • 27.

    Limpens, H. J. G. A. & Kapteyn, K. Bats, their behavior and linear landscape elements. Myotis 29, 39–48 (1991).

    Google Scholar 

  • 28.

    Verboom, B. & Huitema, H. The importance of linear landscape elements for the pipistrelle Pipistrellus pipistrellus and the serotine bat Eptesicus serotinus. Landsc. Ecol. 12, 117–125 (1997).

    Article 

    Google Scholar 

  • 29.

    Verboom, B. & Spoelstra, K. Effects of food abundance and wind on the use of tree lines by an insectivorous bat Pipistrellus pipistrellus. Can. J. Zool. 77, 1393–1401 (1999).

    Article 

    Google Scholar 

  • 30.

    Zurcher, A. A., Sparks, D. W. & Bennett, V. J. Why the bat did not cross the road?. Acta Chiropterol. 12, 337–340 (2010).

    Article 

    Google Scholar 

  • 31.

    Bennett, V. J. & Zurcher, A. A. When corridors collide: Road-related disturbance in commuting bats. J. Wildl. Manage. 77, 93–101 (2013).

    Article 

    Google Scholar 

  • 32.

    Anderson, D. & Wheatley, N. Mitigation of Wheel Squeal and Flanging Noise on the Australian Rail Network. in Noise and Vibration Mitigation for Rail Transportation Systems (eds. Schulte-Werning, B. et al.) 399–405 (Springer Berlin Heidelberg, 2007). doi:https://doi.org/10.1007/978-3-540-74893-9_56

  • 33.

    Rudd, M. J. Wheel/rail noise—Part II: Wheel squeal. J. Sound Vib. 46, 381–394 (1976).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Schaub, A., Ostwald, J. & Siemers, B. M. Foraging bats avoid noise. J. Exp. Biol. 211, 3174–3180 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 35.

    Luo, J., Siemers, B. M. & Koselj, K. How anthropogenic noise affects foraging. Glob. Chang. Biol. 21, 3278–3289 (2015).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Siemers, B. M. & Schaub, A. Hunting at the highway: Traffic noise reduces foraging efficiency in acoustic predators. Proc. R. Soc. B Biol. Sci. 278, 1646–1652 (2011).

    Article 

    Google Scholar 

  • 37.

    Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and evolutionary traps. Trends Ecol. Evol. 17, 474–480 (2002).

    Article 

    Google Scholar 

  • 38.

    Kaňuch, P., Fornůsková, A., Bartonička, T., Bryja, J. & Řehák, Z. Do two cryptic pipistrelle bat species differ in their autumn and winter roosting strategies within the range of sympatry?. Folia Zool. 59, 102–107 (2010).

    Article 

    Google Scholar 

  • 39.

    Dietz, C. & Kiefer, A. Bats of Britain and Europe (Bloomsbury Natural History, 2016).

    Google Scholar 

  • 40.

    Schnitzler, H. U. & Kalko, E. K. V. Echolocation by insect-eating bats. Bioscience 51, 557–569 (2001).

    Article 

    Google Scholar 

  • 41.

    Russ, J. M. & Montgomery, W. I. Habitat associations of bats in Northern Ireland: Implications for conservation. Biol. Conserv. 108, 49–58 (2002).

    Article 

    Google Scholar 

  • 42.

    Rachwald, A., Bradford, T., Borowski, Z. & Racey, P. A. Habitat preferences of soprano Pipistrelle Pipistrellus pygmaeus (Leach, 1825) and common Pipistrelle Pipistrellus pipistrellus (Schreber, 1774) in two different Woodlands in North East Scotland. Zool. Stud. 55, 1–8 (2016).

    Google Scholar 

  • 43.

    Nicholls, B. & Racey, A. Habitat selection as a mechanism of resource partitioning in two cryptic bat species Pipistrellus pipistrellus and Pipistrellus pygmaeus. Ecography (Cop.) 29, 697–708 (2006).

    Article 

    Google Scholar 

  • 44.

    Ciechanowski, M. Habitat preferences of bats in anthropogenically altered, mosaic landscapes of northern Poland. Eur. J. Wildl. Res. 61, 415–428 (2015).

    Article 

    Google Scholar 

  • 45.

    Mathews, F. et al. Barriers and benefits: Implications of artificial night-lighting for the distribution of common bats in britain and ireland. Philos. Trans. R. Soc. B Biol. Sci. 370, (2015).

  • 46.

    Spoelstra, K. et al. Experimental illumination of natural habitat—an experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition. Philos. Trans. R. Soc. B Biol. Sci. 370, (2015).

  • 47.

    Brown, A. M. An investigation of the cochlear microphonic response of two species of echolocating bats: Rousettus aegyptiacus (geoffroy) and Pipistrellus pipistrellus (Schreber). J. Comp. Physiol. 83, 407–413 (1973).

    Article 

    Google Scholar 

  • 48.

    Wong, J. G. & Waters, D. A. The synchronisation of signal emission with wingbeat during the approach phase in soprano pipistrelles (Pipistrellus pygmaeus). J. Exp. Biol. 204, 575–583 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Adams, A. M., Jantzen, M. K., Hamilton, R. M. & Fenton, M. B. Do you hear what I hear? Implications of detector selection for acoustic monitoring of bats. Methods Ecol. Evol. 3, 992–998 (2012).

    Article 

    Google Scholar 

  • 50.

    Lintott, P. R. et al. Ecobat: An online resource to facilitate transparent, evidence-based interpretation of bat activity data. Ecol. Evol. 8, 935–941 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Shaw-Taylor, L. & You, X. The development of the railway network in Britain 1825–1911. in The Online Historical Atlas of Transport, Urbanization and Economic Development in England and Wales c.1680–1911 (eds. Shaw-Taylor, L., Bogart, D. & Satchell, M.) (2018).

  • 52.

    Hatano, L., Smith, R. A. & Hillmansen, S. International railway comparisons. Proc. Inst. Mech Eng. Part F J. Rail Rapid Transit 221, 117–123 (2007).

    Article 

    Google Scholar 

  • 53.

    Robinson, R. A. & Sutherland, W. J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 39, 157–176 (2002).

    Article 

    Google Scholar 

  • 54.

    Myczko, Ł et al. Effects of local roads and car traffic on the occurrence pattern and foraging behaviour of bats. Transp. Res. Part D Transp. Environ. 56, 222–228 (2017).

    Article 

    Google Scholar 

  • 55.

    Ueda, K., Sekoguchi, T. & Yanagisawa, H. How predictability affects habituation to novelty ?. Biorxiv https://doi.org/10.1101/2020.07.24.219253 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    JNCC & Bat Conservation Trust. National Bat Monitoring Programme annual report. (2019).

  • 57.

    Voigt, C. C. & Kingston, T. Bats in the Anthropocene. in Bats in the Anthropocene: Conservation of Bats in a Changing World 245–262 (2015). doi:https://doi.org/10.1007/978-3-319-25220-9_9

  • 58.

    Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there?. J. Mammal. 99, 1–14 (2018).

    Article 

    Google Scholar 

  • 59.

    Frick, W. F., Kingston, T. & Flanders, J. A review of the major threats and challenges to global bat conservation. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.14045 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Fenton, M. B. A technique for monitoring bat activity with results obtained from different environments in southern Ontario. Can. J. Zool. 48, 847–851 (1970).

    Article 

    Google Scholar 

  • 61.

    Švec, J. G. & Granqvist, S. Tutorial and guidelines on measurement of sound pressure level in voice and speech. J. Speech Lang. Hear. Res. 61, 441–461 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Boersma, P. & Weenink, D. Praat: doing phonetics by computer. (2019).

  • 63.

    Sueur, J., Aubin, T. & Simonis, C. Seewave, a free and modular tool for sound analysis and synthesis. Bioacoustics-the Int. J. Anim. Sound Its Rec. 18, 213–226 (2008).

    Google Scholar 

  • 64.

    Harrell, F. E. Hmisc: Harrell Miscellaneous. (2014).

  • 65.

    Met Office. MIDAS: UK Hourly Weather Observation Data. NCAS Br. Atmos. Data Cent. (2019).

  • 66.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2019).

  • 67.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378 (2017).

    Article 

    Google Scholar 

  • 68.

    Swift, S. M. Activity patterns of Pipistrelle bats (Pipistrellus pipistrellus) in north-east Scotland. J. Zool. 190, 285–295 (2009).

    Article 

    Google Scholar 

  • 69.

    Petrželková, K. J., Downs, N. C., Zukal, J. & Racey, P. A. A comparison between emergence and return activity in pipistrelle bats Pipistrellus pipistrellus and P. pygmaeus. Acta Chiropterol. 8, 381–390 (2006).

    Article 

    Google Scholar 

  • 70.

    Ciechanowski, M., Zając, T., Biłas, A. & Dunajski, R. Spatiotemporal variation in activity of bat species differing in hunting tactics: Effects of weather, moonlight, food abundance, and structural clutter. Can. J. Zool. 85, 1249–1263 (2007).

    Article 

    Google Scholar 

  • 71.

    Bejder, L., Samuels, A., Whitehead, H., Finn, H. & Allen, S. Impact assessment research: Use and misuse of habituation, sensitisation and tolerance in describing wildlife responses to anthropogenic stimuli. Mar. Ecol. Prog. Ser. 395, 177–185 (2009).

    ADS 
    Article 

    Google Scholar 

  • 72.

    Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 73.

    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 1–32 (2018).

    Google Scholar 

  • 74.

    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).

    Article 

    Google Scholar 

  • 75.

    Barton, K. MuMIn: Multi-Model Inference (R Package v3). (2017).

  • 76.

    Pasch, B., Bolker, B. M. & Phelps, S. M. Interspecific dominance via vocal interactions mediates altitudinal zonation in neotropical singing mice. Am. Nat. 182, 2 (2013).

    Article 

    Google Scholar 

  • 77.

    Bates, D., Kliegl, R., Vasishth, S. & Baayen, H. Parsimonious mixed models. (2015).

  • 78.

    Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level / mixed) regression models. (2020).

  • 79.

    Lüdecke, D. sjPlot: Data visualization for statistics in social science. (2020).


  • Source: Ecology - nature.com

    How marsh grass protects shorelines

    Influence of historical changes in tropical reef habitat on the diversification of coral reef fishes