in

Predicting the current and future global distribution of the invasive freshwater hydrozoan Craspedacusta sowerbii

  • 1.

    Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).

    CAS 

    Google Scholar 

  • 2.

    Jankowski, T., Collins, A. G. & Campbell, R. Global diversity of inland water cnidarians. In Freshwater Animal Diversity Assessment 35–40 (Springer, 2008).

    Google Scholar 

  • 3.

    Pelosse, J. Étude biologique sur la méduse d’eau douce, Limnocodium Sowerbyi Ray Lankester, du Parc de la Tête-d’Or de Lyon. Publ. Société Linn. Lyon 65, 53–62 (1919).

    Google Scholar 

  • 4.

    Lüskow, F., López-González, P. J. & Pakhomov, E. A. Freshwater jellyfish in northern temperate lakes: Craspedacusta sowerbii in British Columbia, Canada. Aquat. Biol. 30, 69–84 (2021).

    Google Scholar 

  • 5.

    McClary, A. The effect of temperature on growth and reproduction in Craspedacusta sowerbii. Ecology 40, 158–162 (1959).

    Google Scholar 

  • 6.

    McClary, A. Experimental studies of bud development in Craspedacusta sowerbii. Trans. Am. Microsc. Soc. 80, 343–353 (1961).

    Google Scholar 

  • 7.

    McClary, A. Histological changes during regeneration of Craspedacusta sowerbii. Trans. Am. Microsc. Soc. 83, 349–357 (1964).

    Google Scholar 

  • 8.

    Acker, T. S. & Muscat, A. M. The ecology of Craspedacusta sowerbii Lankester, a freshwater hydrozoan. Am. Midl. Nat. 95, 323–336 (1976).

    Google Scholar 

  • 9.

    Boothroyd, I. K., Etheredge, M. K. & Green, J. D. Spatial distribution, size structure, and prey of Craspedacusta sowerbyi Lankester in a shallow New Zealand lake. Hydrobiologia 468, 23–32 (2002).

    Google Scholar 

  • 10.

    Turquin, M. J. Progrès dans la connaissance de la métagenèse chez Craspedacusta sowerbii (= sowerbyi) (Limnoméduse, Olindiidae). Bourgogne-Nat. 9, 162–174 (2010).

    Google Scholar 

  • 11.

    Marchessaux, G. & Bejean, M. From frustules to medusae: A new culture system for the study of the invasive hydrozoan Craspedacusta sowerbii in the laboratory. Invertebr. Biol. 139, e12308 (2020).

    Google Scholar 

  • 12.

    Bouillon, J. & Boero, F. The hydrozoa: A new classification in the ligth of old knowledge. Thalass. Salentina 24, 3–45 (2000).

    Google Scholar 

  • 13.

    Dumont, H. J. The distribution and ecology of the fresh-and brackish-water medusae of the world. In Studies on the Ecology of Tropical Zooplankton 1–12 (Springer, 1994).

    Google Scholar 

  • 14.

    Duggan, I. C. The freshwater aquarium trade as a vector for incidental invertebrate fauna. Biol. Invasions 12, 3757–3770 (2010).

    Google Scholar 

  • 15.

    Marchessaux, G., Gadreaud, J. & Belloni, B. The freshwater jellyfish Craspedacusta sowerbii lankester, 1880: An overview of its distribution in France. Vie Milieu 69, 201–213 (2019).

    Google Scholar 

  • 16.

    Pennak, R. W. The fresh-water jellyfish Craspedacusta in Colorado with some remarks on its ecology and morphological degeneration. Trans. Am. Microsc. Soc. 75, 324–331 (1956).

    Google Scholar 

  • 17.

    Matthews, D. C. A Comparative study of Craspedacusta sowerbyi and Calpasoma dactyloptera life cycles (1966).

  • 18.

    Lundberg, S. & Svensson, J. E. Medusae invasions in Swedish lakes. Fauna Flora 98, 18–28 (2003).

    Google Scholar 

  • 19.

    Jakovčev-Todorović, D., Đikanović, V., Skorić, S. & Cakić, P. Freshwater jellyfish Craspedacusta sowerbyi Lankester, 1880 (Hydrozoa, Olindiidae): 50 years’ observations in Serbia. Arch. Biol. Sci. 62, 123–127 (2010).

    Google Scholar 

  • 20.

    Bosso, L., De Conno, C. & Russo, D. Modelling the risk posed by the zebra mussel Dreissena polymorpha: Italy as a case study. Environ. Manag. 60, 304–313 (2017).

    ADS 

    Google Scholar 

  • 21.

    Taheri, S., Naimi, B., Rahbek, C. & Araújo, M. B. Improvements in reports of species redistribution under climate change are required. Sci. Adv. 7, eabe1110 (2021).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 22.

    Hosmer, D. W., Jovanovic, B. & Lemeshow, S. Best subsets logistic regression. Biometrics 45, 1265–1270 (1989).

    MATH 

    Google Scholar 

  • 23.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Google Scholar 

  • 24.

    Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. 102, 8245–8250 (2005).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 25.

    Walther, G. Inference and modeling with log-concave distributions. Stat. Sci. 24, 319–327 (2009).

    MathSciNet 
    MATH 

    Google Scholar 

  • 26.

    Mangano, M. C. et al. Moving toward a strategy for addressing climate displacement of marine resources: A proof-of-concept. Front. Mar. Sci. 7, 408 (2020).

    ADS 

    Google Scholar 

  • 27.

    Perkins-Taylor, I. & Frey, J. Predicting the distribution of a rare chipmunk (Neotamias quadrivittatus oscuraensis): Comparing MaxEnt and occupancy models. J. Mammal. 101, 1035–1048 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Di Pasquale, G. et al. Coastal pine-oak glacial refugia in the Mediterranean basin: A biogeographic approach based on charcoal analysis and spatial modelling. Forests 11, 673 (2020).

    Google Scholar 

  • 29.

    Thapa, A. et al. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol. Evol. 8, 10542–10554 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Fernández, M. & Hamilton, H. Ecological niche transferability using invasive species as a case study. PLoS ONE 10, e0119891 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Sarà, G., Palmeri, V., Rinaldi, A., Montalto, V. & Helmuth, B. Predicting biological invasions in marine habitats through eco-physiological mechanistic models: A case study with the bivalve B rachidontes pharaonis. Divers. Distrib. 19, 1235–1247 (2013).

    Google Scholar 

  • 32.

    Sarà, G., Porporato, E. M., Mangano, M. C. & Mieszkowska, N. Multiple stressors facilitate the spread of a non-indigenous bivalve in the Mediterranean Sea. J. Biogeogr. 45, 1090–1103 (2018).

    Google Scholar 

  • 33.

    Markovic, D., Freyhof, J. & Wolter, C. Where are all the fish: Potential of biogeographical maps to project current and future distribution patterns of freshwater species. PLoS ONE 7, e40530 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 34.

    Hamner, W. M., Gilmer, R. W. & Hamner, P. P. The physical, chemical, and biological characteristics of a stratified, saline, sulfide lake in Palau 1. Limnol. Oceanogr. 27, 896–909 (1982).

    CAS 
    ADS 

    Google Scholar 

  • 35.

    Hamner, W. M. & Hauri, I. R. Long-distance horizontal migrations of zooplankton (Scyphomedusae: Mastigias) 1. Limnol. Oceanogr. 26, 414–423 (1981).

    ADS 

    Google Scholar 

  • 36.

    Duggan, I. C. & Eastwood, K. R. Detection and distribution of Craspedacusta sowerbii: Observations of medusae are not enough. (2012).

  • 37.

    Galarce, L. C., Riquelme, K. V., Osman, D. Y. & Fuentes, R. A. A new record of the non indigenous freshwater jellyfish Craspedacusta sowerbii Lankester, 1880 (Cnidaria) in Northern Patagonia (40 S, Chile). Bioinvasions Rec. 2, 263–270 (2013).

    Google Scholar 

  • 38.

    Stanković, I. & Ternjej, I. New ecological insight on two invasive species: Craspedacusta sowerbii (Coelenterata: Limnomedusae) and Dreissenia polymorpha (Bivalvia: Dreissenidae). J. Nat. Hist. 44, 2707–2713 (2010).

    Google Scholar 

  • 39.

    Stefani, F., Leoni, B., Marieni, A. & Garibaldi, L. A new record of Craspedacusta sowerbii, Lankester 1880 (Cnidaria, Limnomedusae) in northern Italy. J. Limnol. 69, 189 (2010).

    Google Scholar 

  • 40.

    Jankowski, T., Strauss, T. & Ratte, H. T. Trophic interactions of the freshwater jellyfish Craspedacusta sowerbii. J. Plankton Res. 27, 811–823 (2005).

    CAS 

    Google Scholar 

  • 41.

    Adams, I. B. The effect of light and prey availability on the activity of the freshwater jellyfish, Craspedacusta sowerbii (Hydrozoan) (Mém. B Sc Univ James Madison À Harrisonburg Virginie, 2009).

    Google Scholar 

  • 42.

    Marchessaux, G. & Bejean, M. Growth and ingestion rates of the freshwater jellyfish Craspedacusta sowerbii. J. Plankton Res. 42, 783–786 (2020).

    CAS 

    Google Scholar 

  • 43.

    Himchik, V., Marenkov, O. & Shmyhol, N. Biology of reproduction of aquatic organisms: The course of oogenesis of freshwater jellyfish Craspedacusta sowerbii Lancester, 1880 in the Dnieper reservoir. World Sci. News 160, 1–15 (2021).

    Google Scholar 

  • 44.

    Caputo, L., Huovinen, P., Sommaruga, R. & Gómez, I. Water transparency affects the survival of the medusa stage of the invasive freshwater jellyfish Craspedacusta sowerbii. Hydrobiologia 817, 179–191 (2018).

    CAS 

    Google Scholar 

  • 45.

    Bozman, A., Titelman, J., Kaartvedt, S., Eiane, K. & Aksnes, D. L. Jellyfish distribute vertically according to irradiance. J. Plankton Res. 39, 280–289 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Salonen, K. et al. Limnocnida tanganyicae medusae (Cnidaria: Hydrozoa): A semiautonomous microcosm in the food web of Lake Tanganyika. In Jellyfish Blooms IV 97–112 (Springer, 2012).

    Google Scholar 

  • 47.

    Dodson, S. I. & Cooper, S. D. Trophic relationships of the freshwater jellyfish Craspedacusta sowerbyi Lankester 1880. Limnol. Oceanogr. 28, 345–351 (1983).

    ADS 

    Google Scholar 

  • 48.

    Smith, A. S. & Alexander, J. E. Jr. Potential effects of the freshwater jellyfish Craspedacusta sowerbii on zooplankton community abundance. J. Plankton Res. 30, 1323–1327 (2008).

    Google Scholar 

  • 49.

    Spadinger, R. & Maier, G. Prey selection and diel feeding of the freshwater jellyfish, Craspedacusta sowerbyi. Freshw. Biol. 41, 567–573 (1999).

    Google Scholar 

  • 50.

    Simberloff, D. et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).

    PubMed 

    Google Scholar 

  • 51.

    Uchida, T. A new sporozoan-like reproduction in the hydromedusa. Gonionemus vertens. Proc. Jpn. Acad. 52, 387–388 (1976).

    Google Scholar 

  • 52.

    Williams, A. B. Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States, Maine to Florida (1984).

  • 53.

    Parent, G. H. La découverte lorraine de Craspedacusta sowerbyi Lank. dans son contexte chorologique et écologique européen. Bull. Soc. D’Histoire Nat. Moselle 43, 317–337 (1982).

    Google Scholar 

  • 54.

    Amemiya, I. Freshwater medusa found in the tank of my laboratory. Jpn. J. Zool. Trans. Abstr. 3, Abstract (1930).

  • 55.

    Joshi, M. V. & Tonapi, G. T. A new record of freshwater medusa from India. Curr. Sci. 34, 665–666 (1965).

    Google Scholar 

  • 56.

    El Moussaoui, N. & Beisner, B. L. La méduse d’eau douce Craspedacusta sowerbii: espèce exotique répandue dans les lacs du Québec. Nat. Can. 141, 40–46 (2017).

    Google Scholar 

  • 57.

    Fish, G. R. Craspedacusta sowerbyi Lankester (Coelenterata: Limnomedusae) in New Zealand lakes. N. Z. J. Mar. Freshw. Res. 5, 66–69 (1971).

    Google Scholar 

  • 58.

    Rayner, N. A. First record of Craspedacusta sowerbyi Lankester (Cnidaria: Limnomedusae) from Africa. Hydrobiologia 162, 73–77 (1988).

    Google Scholar 

  • 59.

    Somveille, M., Manica, A., Butchart, S. H. & Rodrigues, A. S. Mapping global diversity patterns for migratory birds. PLoS ONE 8, e70907 (2013).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 60.

    Newton, I. & Dale, L. C. Bird migration at different latitudes in eastern North America. Auk 113, 626–635 (1996).

    Google Scholar 

  • 61.

    Zhang, J. et al. Determination of original infection source of H7N9 avian influenza by dynamical model. Sci. Rep. 4, 1–16 (2014).

    Google Scholar 

  • 62.

    Fuentes, R., Cárdenas, L., Abarzua, A. & Caputo, L. Southward invasion of Craspedacusta sowerbii across mesotrophic lakes in Chile: Geographical distribution and genetic diversity of the medusa phase. Freshw. Sci. 38, 193–202 (2019).

    Google Scholar 

  • 63.

    Harrell, F. E. Hmisc: Harrell Miscellaneous (Version 4.5-0) (2021).

  • 64.

    Marchessaux, G., Lüskow, F., Sarà, G. & Pakhomov, E. Mapping the global distribution of the freshwater hydrozoan Craspedacusta sowerbii. Pangaea https://doi.org/10.1594/PANGAEA.936074 (2021).

  • 65.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  • 66.

    McGarvey, D. J. et al. On the use of climate covariates in aquatic species distribution models: Are we at risk of throwing out the baby with the bath water?. Ecography 41, 695–712 (2018).

    Google Scholar 

  • 67.

    Zeng, Y. & Yeo, D. C. Assessing the aggregated risk of invasive crayfish and climate change to freshwater crabs: A Southeast Asian case study. Biol. Conserv. 223, 58–67 (2018).

    Google Scholar 

  • 68.

    Wei, T. et al. Package ‘corrplot’. Statistician 56, e24 (2017).

    Google Scholar 

  • 69.

    R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  • 70.

    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    ADS 

    Google Scholar 

  • 71.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Google Scholar 

  • 72.

    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Google Scholar 

  • 73.

    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).

    Google Scholar 

  • 74.

    Bradie, J. & Leung, B. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J. Biogeogr. 44, 1344–1361 (2017).

    Google Scholar 

  • 75.

    Zhang, K., Yao, L., Meng, J. & Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 634, 1326–1334 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 76.

    Silva, C., Leiva, F. & Lastra, J. Predicting the current and future suitable habitat distributions of the anchovy (Engraulis ringens) using the Maxent model in the coastal areas off central-northern Chile. Fish. Oceanogr. 28, 171–182 (2019).

    Google Scholar 

  • 77.

    Nenzén, H. K. & Araújo, M. B. Choice of threshold alters projections of species range shifts under climate change. Ecol. Model. 222, 3346–3354 (2011).

    Google Scholar 

  • 78.

    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).

    Google Scholar 

  • 79.

    DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 837–845 (1988).


  • Source: Ecology - nature.com

    First tracking of the oceanic spawning migrations of Australasian short-finned eels (Anguilla australis)

    Timber or steel? Study helps builders reduce carbon footprint of truss structures