in

Radiolysis generates a complex organosynthetic chemical network

  • 1.

    Garrison, W. M., Morrison, D. C., Hamilton, J. G., Benson, A. A. & Calvin, M. Reduction of carbon dioxide in aqueous solutions by ionizing radiation. Science 114, 416–418 (1951).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 2.

    Draganić, Z. D., Draganić, I. G. & Borovičanin, M. The radiation chemistry of aqueous solutions of hydrogen cyanide in the megarad dose range. Radiat. Res. 66, 42–53 (1976).

    PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 3.

    Bar-Nun, A. & Hartman, H. Synthesis of organic compounds from carbon monoxide and water by UV photolysis. Origins Life 9, 93–101 (1978).

    CAS  Article  ADS  Google Scholar 

  • 4.

    Miller, S. L. & Urey, H. C. Organic compound synthesis on the primitive earth. Science 130, 245–251 (1959).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 5.

    Pasek, M. A., Dworkin, J. P. & Lauretta, D. S. A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim. Cosmochim. Acta 71, 1721–1736 (2007).

    CAS  Article  ADS  Google Scholar 

  • 6.

    Lim, R. W. J. & Fahrenbach, A. C. Radicals in prebiotic chemistry. Pure Appl. Chem. 92, 1971–1986 (2020).

    CAS  Article  Google Scholar 

  • 7.

    Studer, A. & Curran, D. P. Catalysis of radical reactions: A radical chemistry perspective. Angew. Chem. Int. Ed. 55, 58–102 (2016).

    CAS  Article  Google Scholar 

  • 8.

    Shock, E. L. et al. Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems, Yellowstone National Park, USA. Geochim. Cosmochim. Acta 74, 4005–4043 (2010).

    CAS  Article  ADS  Google Scholar 

  • 9.

    Bím, D., Maldonado-Domínguez, M., Rulíšek, L. & Srnec, M. Beyond the classical thermodynamic contributions to hydrogen atom abstraction reactivity. Proc. Natl. Acad. Sci. USA 115, E10287–E10294 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 10.

    Mayer, J. M. Hydrogen atom abstraction by metal–oxo complexes: Understanding the analogy with organic radical reactions. Acc. Chem. Res. 31, 441–450 (1998).

    CAS  Article  Google Scholar 

  • 11.

    Gutowski, M. & Kowalczyk, S. A study of free radical chemistry: Their role and pathophysiological significance. Acta Biochim. Pol. 60, 1–16 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Moran, J. & Rauscher, S. Energy and self-organization at the origin of metabolism. Commun. Chem. (in rev.).

  • 13.

    Nghe, P. et al. Prebiotic network evolution: Six key parameters. Mol. BioSyst. 11, 3206–3217 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Jolley, C. & Douglas, T. Topological biosignatures: Large-scale structure of chemical networks from biology and astrochemistry. Astrobiology 12, 29–39 (2012).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 15.

    Solé, R. V. & Munteanu, A. The large-scale organization of chemical reaction networks in astrophysics. Europhys. Lett. 68, 170–176 (2004).

    Article  ADS  CAS  Google Scholar 

  • 16.

    Shenhav, B., Solomon, A., Lancet, D. & Kafri, R. in Transactions on Computational Systems Biology I (ed. Priami, C.) 14–27 (Springer, Berlin, 2005).

    Google Scholar 

  • 17.

    Brown, J. H. et al. The fractal nature of nature: Power laws, ecological complexity and biodiversity. Philos. Trans. R. Soc. Lond. B 357, 619–626 (2002).

    Article  Google Scholar 

  • 18.

    Walker, S. I. & Mathis, C. in Prebiotic Chemistry and Chemical Evolution of Nucleic Acids (ed. Menor-Salvár, C.) 263–291 (Springer, Berlin, 2018).

    Google Scholar 

  • 19.

    Hordijk, W., Hein, J. & Steel, M. Autocatalytic sets and the origin of life. Entropy 12, 1733–1742 (2010).

    CAS  Article  ADS  Google Scholar 

  • 20.

    Albert, R. Scale-free networks in cell biology. J. Cell. Sci. 118, 4947–4957 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Liu, R., Mao, G. & Zhang, N. Research of chemical elements and chemical bonds from the view of complex network. Found. Chem. 21, 193–206 (2019).

    CAS  Article  Google Scholar 

  • 22.

    Estrada, E. The complex networks of earth minerals and chemical elements. MATCH Commun. Math. Comput. Chem. 59, 605–624 (2008).

    MathSciNet  CAS  MATH  Google Scholar 

  • 23.

    Fricker, M. D., Boddy, L., Nakagaki, T. & Bebber, D. P. In Adaptive Biological Networks (eds. Gross, T. & Sayama, H.) 51–70 (Springer, Berlin, 2009).

    Google Scholar 

  • 24.

    Nicolis, G. Chemical chaos and self-organization. J. Phys. Condens. Matter 2, SA47–SA62 (1990).

    CAS  Article  ADS  Google Scholar 

  • 25.

    Pérez-Mercader, J. In Astrobiology (eds. Horneck, G. & Baumstark-Khan, C.) 337–360 (Springer, Berlin, 2002).

    Google Scholar 

  • 26.

    Li, W. Expansion-modification systems: A model for spatial 1/f spectra. Phys. Rev. A 43, 5240–5260 (1991).

    MathSciNet  CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 27.

    Albert, R. & Barabási, A.-L. Topology of evolving networks: Local events and universality. Phys. Rev. Lett. 85, 5234–5237 (2000).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 28.

    Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    MathSciNet  PubMed  MATH  Article  ADS  PubMed Central  Google Scholar 

  • 29.

    Marković, D. & Gros, C. Power laws and self-organized criticality in theory and nature. Phys. Rep. 536, 41–74 (2014).

    MathSciNet  Article  ADS  Google Scholar 

  • 30.

    Adler, R., Feldman, R. & Taqqu, M. (eds.) A Practical Guide to Heavy Tails: Statistical Techniques and Applications (Springer, Berlin, 1998).

    Google Scholar 

  • 31.

    Patten, B. C. & Higashi, M. Modified cycling index for ecological applications. Ecol. Modell. 25, 69–83 (1984).

    Article  Google Scholar 

  • 32.

    Essington, T. E. & Carpenter, S. R. Nutrient cycling in lakes and streams: Insights from a comparative analysis. Ecosystems 3, 131–143 (2000).

    CAS  Article  Google Scholar 

  • 33.

    Christian, R. R. & Thomas, C. R. Network analysis of nitrogen inputs and cycling in the Neuse River estuary, North Carolina, USA. Estuaries 26, 815–828 (2003).

    CAS  Article  Google Scholar 

  • 34.

    Allesina, S. & Ulanowicz, R. E. Cycling in ecological networks: Finn’s index revisited. Comput. Biol. Chem. 28, 227–233 (2004).

    CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

  • 35.

    Loreau, M. Material cycling and the stability of ecosystems. Am. Nat. 143, 508–513 (1994).

    Article  Google Scholar 

  • 36.

    DeAngelis, D. L. et al. Nutrient dynamics and food-web stability. Annu. Rev. Ecol. Syst. 20, 71–95 (1989).

    Article  Google Scholar 

  • 37.

    Artzy-Randrup, Y. & Stone, L. Connectivity, cycles, and persistence thresholds in metapopulation networks. PLoS Comput. Biol. 6, e1000876 (2010).

    MathSciNet  PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 38.

    Newsholme, E. A. & Crabtree, B. Substrate cycles in metabolic regulation and in heat generation. Biochem. Soc. Symp. 41, 61–109 (1976).

    CAS  Google Scholar 

  • 39.

    Kritz, M. V., dos Santos, M. T., Urrutia, S. & Schwartz, J.-M. Organising metabolic networks: Cycles in flux distributions. J. Theor. Biol. 265, 250–260 (2010).

    MathSciNet  PubMed  MATH  Article  PubMed Central  Google Scholar 

  • 40.

    Valentine, J. W. & May, C. L. Hierarchies in biology and paleontology. Paleobiology 22, 23–33 (1996).

    Article  Google Scholar 

  • 41.

    McShea, D. W. The hierarchical structure of organisms: A scale and documentation of a trend in the maximum. Paleobiology 27, 405–423 (2001).

    Article  Google Scholar 

  • 42.

    Trebilco, R., Baum, J. K., Salomon, A. K. & Dulvy, N. K. Ecosystem ecology: Size-based constraints on the pyramids of life. Trends Ecol. Evol. 28, 423–431 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Lindeman, R. L. The trophic-dynamic aspect of ecology. Bull. Math. Biol. 53, 167–191 (1991).

    Article  Google Scholar 

  • 44.

    Kleidon, A. & Lorenz, R. D. (eds.) Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond (Springer, Berlin, 2005).

    Google Scholar 

  • 45.

    Goldenfeld, N. & Woese, C. Life is physics: Evolution as a collective phenomenon far from equilibrium. Annu. Rev. Condens. Matter Phys. 2, 375–399 (2011).

    CAS  Article  ADS  Google Scholar 

  • 46.

    Braakman, R. & Smith, E. The compositional and evolutionary logic of metabolism. Phys. Biol. 10, 011001 (2013).

    PubMed  Article  ADS  CAS  PubMed Central  Google Scholar 

  • 47.

    Ji, S. Molecular Theory of the Living Cell: Concepts, Molecular Mechanisms, and Biomedical Applications (Springer, Berlin, 2012).

    Google Scholar 

  • 48.

    Yi, R. et al. A continuous reaction network that produces RNA precursors. Proc. Natl. Acad. Sci. USA 117, 13267–13274 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Yi, R., Hongo, Y., Yoda, I., Adam, Z. R. & Fahrenbach, A. C. Radiolytic synthesis of cyanogen chloride, cyanamide and simple sugar precursors. ChemistrySelect 3, 10169–10174 (2018).

    CAS  Article  Google Scholar 

  • 50.

    Ritson, D. & Sutherland, J. D. Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nat. Chem. 4, 895–899 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Ferus, M. et al. High energy radical chemistry formation of HCN-rich atmospheres on early Earth. Sci. Rep. 7, 6275 (2017).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 52.

    Getoff, N. Significance of solvated electrons (eaq) as promoters of life on Earth. In Vivo 28, 61–66 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Negrón-Mendoza, A., Draganić, Z. D., Navarro-González, R. & Draganić, I. G. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles. Radiat. Res. 95, 248–261 (1983).

    Article  ADS  Google Scholar 

  • 54.

    Adam, Z. R. et al. Estimating the capacity for production of formamide by radioactive minerals on the prebiotic Earth. Sci. Rep. 8, 265 (2018).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 55.

    Bedau, M. A. et al. Open problems in artificial life. Artif. Life 6, 363–376 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Grassberger, P. in Information Dynamics NATO ASI Series (Series B: Physics) (eds. Atmanspacher, H. & Scheingraber, H.) 15–33 (Springer, Berlin, 1991).

    Google Scholar 

  • 57.

    Kaneko, K. Chaos as a source of complexity and diversity in evolution. Artif. Life 1, 163–177 (1993).

    Article  Google Scholar 

  • 58.

    Buhl, D. & Ponnamperuma, C. Interstellar molecules and the origin of life. Sp. Life Sci. 3, 157–164 (1971).

    CAS  ADS  Google Scholar 

  • 59.

    Airapetian, V. S., Glocer, A., Gronoff, G., Hébrard, E. & Danchi, W. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat. Geosci. 9, 452–455 (2016).

    CAS  Article  ADS  Google Scholar 

  • 60.

    Paranicas, C., Cooper, J. F., Garrett, H. B., Johnson, R. E. & Sturner, S. J. in Europa (eds. Pappalardo, R. T. et al.) 529–544 (University of Arizona Press, Tucson, 2009).

    Google Scholar 

  • 61.

    Takano, Y., Masuda, H., Kaneko, T. & Kobayashi, K. Formation of amino acids from possible interstellar media by γ-rays and UV irradiation. Chem. Lett. 31, 986–987 (2002).

    Article  Google Scholar 

  • 62.

    Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 63.

    Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    MathSciNet  MATH  Article  ADS  Google Scholar 

  • 64.

    Grohe, M. in Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems 1–16 (Portland, OR, USA, 2020).

  • 65.

    Grover, A. & Leskovec, J. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 855–864 (San Francisco, CA, USA, 2016).

  • 66.

    Palumbo, E. et al. in The Semantic Web: European Semantic Web Conference Vol. 11155, 117–120 (Springer, Crete, Greece, 2018).

  • 67.

    Kim, M., Baek, S. H. & Song, M. Relation extraction for biological pathway construction using node2vec. BMC Bioinform. 19, 206 (2018).

    Article  CAS  Google Scholar 

  • 68.

    Shen, Z., Chen, F., Yang, L. & Wu, J. Node2vec representation for clustering journals and as a possible measure of diversity. J. Data Inf. Sci. 4, 79–92 (2019).

    Google Scholar 

  • 69.

    Barabási, A.-L. & Oltvai, Z. N. Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 70.

    Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A.-L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 71.

    Ritson, D. J. & Sutherland, J. D. Synthesis of aldehydic ribonucleotide and amino acid precursors by photoredox chemistry. Angew. Chem. Int. Ed. 52, 5845–5847 (2013).

    CAS  Article  Google Scholar 

  • 72.

    Fahrenbach, A. C. et al. Common and potentially prebiotic origin for precursors of nucleotide synthesis and activation. J. Am. Chem. Soc. 139, 8780–8783 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 73.

    Muñoz, M. A. Colloquium: Criticality and dynamical scaling in living systems. Rev. Mod. Phys. 90, 031001 (2018).

    MathSciNet  Article  ADS  Google Scholar 

  • 74.

    Langton, C. G. Computation at the edge of chaos: Phase transitions and emergent computation. Phys. D Nonlinear Phenom. 42, 12–37 (1990).

    MathSciNet  Article  ADS  Google Scholar 

  • 75.

    Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 76.

    Gaveau, B., Moreau, M. & Toth, J. Scenarios for self-organized criticality in dynamical systems. Open Syst. Inf. Dyn. 7, 297–308 (2000).

    MathSciNet  MATH  Article  Google Scholar 

  • 77.

    Bak, P. & Paczuski, M. Complexity, contingency, and criticality. Proc. Natl. Acad. Sci. USA 92, 6689–6696 (1995).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 78.

    Hoffmann, H. & Payton, D. W. Optimization by self-organized criticality. Sci. Rep. 8, 2358 (2018).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 79.

    Lovecchio, E., Allegrini, P., Geneston, E., West, B. J. & Grigolini, P. From self-organized to extended criticality. Front. Physiol. 3, 98 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 80.

    Lima-Mendez, G. & van Helden, J. The powerful law of the power law and other myths in network biology. Mol. BioSyst. 5, 1482–1493 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 81.

    Broido, A. D. & Clauset, A. Scale-free networks are rare. Nat. Commun. 10, 1017 (2019).

    Article  ADS  CAS  Google Scholar 

  • 82.

    Stumpf, M. P. H. & Porter, M. A. Critical truths about power laws. Science 335, 665–666 (2012).

    MathSciNet  CAS  PubMed  MATH  Article  ADS  PubMed Central  Google Scholar 

  • 83.

    Mitzenmacher, M. A brief history of generative models for power law and lognormal distributions. Internet Math. 1, 226–251 (2003).

    MathSciNet  MATH  Article  Google Scholar 

  • 84.

    Glassman, I., Yetter, R. A. & Glumac, N. G. Combustion 41–69 (Elsevier, New York, 2015).

    Google Scholar 

  • 85.

    Gleiss, P. M., Stadler, P. F., Wagner, A. & Fell, D. A. Relevant cycles in chemical reaction networks. Adv. Complex Syst. 4, 207–226 (2001).

    MathSciNet  MATH  Article  Google Scholar 

  • 86.

    Dančík, V., Basu, A. & Clemons, P. in Systems Biology (eds. Prokop, A. & Csukas, B.) 129–178 (Springer, Berlin, 2013).

    Google Scholar 

  • 87.

    Patten, B. C., Higashi, M. & Burns, T. P. Trophic dynamics in ecosystem networks: Significance of cycles and storage. Ecol. Modell. 51, 1–28 (1990).

    Article  Google Scholar 

  • 88.

    Orgel, L. E. The implausibility of metabolic cycles on the prebiotic Earth. PLoS Biol. 6, e18 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 89.

    Monks, P. S. Gas-phase radical chemistry in the troposphere. Chem. Soc. Rev. 34, 376–395 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 90.

    Platt, U. et al. in Tropospheric Chemistry: Results of the German Tropospheric Chemistry Programme (eds. Seiler, W. et al.) 359–394 (Springer, Berlin, 2002).

    Google Scholar 

  • 91.

    Vasas, V., Fernando, C., Santos, M., Kauffman, S. & Szathmáry, E. Evolution before genes. Biol. Direct 7, 1 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 92.

    Robertson, M. P. & Joyce, G. F. The origins of the RNA world. Cold Spring Harb. Perspect. Biol. 4, a003608 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 93.

    Damer, B. & Deamer, D. The hot spring hypothesis for an origin of life. Astrobiology 20, 429–452 (2020).

    PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 94.

    Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 95.

    Soloveichik, D., Cook, M., Winfree, E. & Bruck, J. Computation with finite stochastic chemical reaction networks. Nat. Comput. 7, 615–633 (2008).

    MathSciNet  MATH  Article  Google Scholar 

  • 96.

    Bastian, M., Heymann, S. & Jacomy, M. in Proceedings of the Third International AAAI Conference on Weblogs and Social Media 361–362 (2009).

  • 97.

    Alstott, J., Bullmore, E. & Plenz, D. powerlaw: A Python package for analysis of heavy-tailed distributions. PLoS One 9, e85777 (2014).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 


  • Source: Ecology - nature.com

    The sources of variation for individual prey-to-predator size ratios

    Alteration of coastal productivity and artisanal fisheries interact to affect a marine food web