Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).
Google Scholar
Bindoff, N. L. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 447–588 (IPCC, 2019).
Pörtner, H.-O. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 35–74 (IPCC, 2019).
Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).
Google Scholar
Cai, W. J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4, 766–770 (2011).
Google Scholar
Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C. & Gobler, C. J. Coastal ocean acidification: the other eutrophication problem. Estuar. Coast. Shelf Sci. 148, 1–13 (2014).
Google Scholar
Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).
Google Scholar
Schlichting, C. D. & Pigliucci, M. Phenotypic Evolution: A Reaction Norm Perspective (Sinauer Associates, 1998).
Kelly, M. W. & Hofmann, G. E. Adaptation and the physiology of ocean acidification. Funct. Ecol. 27, 980–990 (2013).
Google Scholar
Pespeni, M. H. et al. Evolutionary change during experimental ocean acidification. Proc. Natl Acad. Sci. USA 110, 6937–6942 (2013).
Google Scholar
Thor, P. & Dupont, S. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob. Change Biol. 21, 2261–2271 (2015).
Google Scholar
Donelson, J. M., Salinas, S., Munday, P. L. & Shama, L. N. S. Transgenerational plasticity and climate change experiments: where do we go from here? Glob. Change Biol. 24, 13–34 (2018).
Google Scholar
Chevin, L. M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).
Google Scholar
Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).
Byrne, M. in Oceanography and Marine Biology: An Annual Review Vol. 49 (eds Gibson, R. N. et al.) Ch. 1 (CRC Press, 2011).
Whiteley, N. M. Physiological and ecological responses of crustaceans to ocean acidification. Mar. Ecol. Prog. Ser. 430, 257–271 (2011).
Google Scholar
Cripps, G., Lindeque, P. & Flynn, K. J. Have we been underestimating the effects of ocean acidification in zooplankton? Glob. Change Biol. 20, 3377–3385 (2014).
Google Scholar
Baumann, H. Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? Can. J. Zool. 97, 399–408 (2019).
Google Scholar
Gibbin, E. M. et al. Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan? J. Exp. Biol. 220, 551–563 (2017).
Gibbin, E. M., Massamba N’Siala, G., Chakravarti, L. J., Jarrold, M. D. & Calosi, P. The evolution of phenotypic plasticity under global change. Sci. Rep. 7, 17253 (2017).
Google Scholar
Gonzalez, A., Ophelie, R., Ferriere, R. & Hochberg, M. E. Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Philos. Trans. R. Soc. Lond. B 368, 20120404 (2012).
Google Scholar
Bell, G. & Gonzalez, A. Evolutionary rescue can prevent extinction following environmental change. Ecol. Lett. 12, 942–948 (2009).
Google Scholar
Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).
Google Scholar
Hardy, A. The Open Sea: The World of Plankton (Fontana Collins, 1970).
Huys, R. & Boxshall, G. A. Copepod Evolution (The Ray Society, 1991).
Beaugrand, G. & Reid, P. C. Long-term changes in phytoplankton, zooplankton and salmon related to climate. Glob. Change Biol. 9, 801–817 (2003).
Google Scholar
Möllmann, C., Müller-Karulis, B., Kornilovs, G. & St John, M. A. Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback loops in a simple ecosystem. ICES J. Mar. Sci. 65, 302–310 (2008).
Google Scholar
Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Annu. Rev. Mar. Sci. 9, 413–444 (2017).
Google Scholar
Mauchline, J. (ed.) The Biology of Calanoid Copepods (Academic Press, 1998).
Turner, J. T. The Feeding Ecology of Some Zooplankters That Are Important Prey Items of Larval Fish. NOAA NMFS Technical Report (1984).
Rice, E., Dam, H. G. & Stewart, G. Impact of climate change on estuarine zooplankton: surface water warming in Long Island Sound is associated with changes in copepod size and community structure. Estuaries Coast 38, 13–23 (2015).
Google Scholar
Gobler, C. J. & Baumann, H. Hypoxia and acidification in marine ecosystems: coupled dynamics and effects on ocean life. Biol. Lett. 12, 20150976 (2016).
Google Scholar
Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. Lond. B 283, 20152592 (2016).
Burt, A. Perspective: the evolution of fitness. Evolution 49, 1–8 (1995).
Hendry, A. P. & Gonzalez, A. Whither adaptation? Biol. Philos. 23, 673–699 (2008).
Google Scholar
Arnold, S. J., Pfrender, M. E. & Jones, A. G. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112–113, 9–32 (2001).
Google Scholar
Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation (Sinauer Associates, 2001).
Sasaki, M. C. & Dam, H. G. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Glob. Change Biol. 25, 4147–4164 (2019).
Google Scholar
Luikart, G., England, P. R., Tallmon, D., Jordan, S. & Taberlet, P. The power and promise of population genomics: from genotyping to genome typing. Nat. Rev. Genet. 4, 981–994 (2003).
Google Scholar
Black, W. C. IV, Baer, C. F., Antolin, M. F. & DuTeau, N. M. Population genomics: genome-wide sampling of insect populations. Annu. Rev. Entomol. 46, 441–469 (2001).
Google Scholar
Brennan, R. et al. Loss and recovery of transcriptional plasticity after long-term adaptation to global change conditions in a marine copepod. Preprint at bioRxiv https://doi.org/10.1101/2020.01.29.925396 (2020).
Kingsolver, J. G. & Pfennig, D. W. Patterns and power of phenotypic selection in nature. Bioscience 57, 561–572 (2007).
Google Scholar
Crespi, B. J. & Bookstein, F. L. A path-analytic model for the measurement of selection on morphology. Evolution 43, 18–28 (1989).
Google Scholar
Pigliucci, M. & Kaplan, J. Making Sense of Evolution (Univ. Chicago Press, 2006); https://doi.org/10.7208/chicago/9780226668352.001.0001
Bush, A. et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1478 (2016).
Google Scholar
Riebesell, U. & Gattuso, J. Lessons learned from ocean acidification research. Nat. Clim. Change 5, 2014–2016 (2015).
Google Scholar
Langer, J. A. F., Meunier, C. L., Ecker, U. & Horn, H. G. Acclimation and adaptation of the coastal calanoid copepod Acartia tonsa to ocean acidification: a long-term laboratory investigation. Mar. Ecol. Prog. Ser. 619, 35–51 (2019).
Google Scholar
De Wit, P., Dupont, S. & Thor, P. Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes. Evol. Appl. 9, 1112–1123 (2016).
Google Scholar
Chakravarti, L. J. et al. Can trans-generational experiments be used to enhance species resilience to ocean warming and acidification? Evol. Appl. 9, 1133–1146 (2016).
Google Scholar
Carrier-Belleau, C., Drolet, D., McKindsey, C. W. & Archambault, P. Environmental stressors, complex interactions and marine benthic communities’ responses. Sci. Rep. 11, 4194 (2021).
Google Scholar
Dam, H. G. & Baumann, H. in Climate Change Impacts on Fisheries and Aquaculture: A Global Analysis (eds Phillips, B. F. and Pérez-Ramírez, M.) 851–874 (Wiley, 2017).
Bell, G. Evolutionary rescue and the limits of adaptation. Philos. Trans. R. Soc. Lond. B 368, 20120080 (2013).
Google Scholar
Falconer, D. S. Introduction to Quantitative Genetics (Longman Scientific and Technical, 1989).
Angilletta, M. J. Jr Estimating and comparing thermal performance curves. J. Therm. Biol. 31, 541–545 (2006).
Google Scholar
Feinberg, L. R. & Dam, H. G. Effects of diet on dimensions, density and sinking rates of fecal pellets of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 175, 87–96 (1998).
Google Scholar
Pierrot, D., Lewis, E. & Wallace, D. W. R. MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, 2006); https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a
Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean (p_{{mathrm{CO}}_2}) calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).
Dickson, A. G. Standard potential of the reaction: AgCl(s) + 12H2 (g) = Ag(s) + HCl (aq), and the standard acidity constant of the ion HSO4– in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).
Google Scholar
Uppström, L. R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res. Oceanogr. Abstr. 21, 161–162 (1974).
Google Scholar
Murray, C. S. & Baumann, H. You better repeat it: complex CO2× temperature effects in Atlantic silverside offspring revealed by serial experimentation. Diversity 10, 69 (2018).
Google Scholar
Schank, J. C. & Koehnle, T. J. Pseudoreplication is a Pseudoproblem. J. Comp. Psychol. 123, 421–433 (2009).
Google Scholar
Oksanen, L. Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 94, 27–38 (2001).
Google Scholar
Therneau, T. A Package for Survival Analysis in R. R package 3.2-11 (2021); https://CRAN.R-project.org/package=survival
Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).
Google Scholar
Rosseel, Y. lvaan: an R package for structural equation modeling. J. Stat. Softw. https://doi.org/10.18637/jss.v048.i02 (2012).
Epskamp, S., Stuber, S., Nak, J., Veenman, M. & Jorgensen, T. D. semPlot: Path Diagrams and Visual Analysis of Various SEM Packages’ Output. (2019); https://CRAN.R-project.org/package=semPlot
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Jørgensen, T. S. et al. The genome and mRNA transcriptome of the cosmopolitan calanoid copepod Acartia tonsa Dana improve the understanding of copepod genome size evolution. Genome Biol. Evol. 11, 1440–1450 (2019).
Google Scholar
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Google Scholar
Kofler, R. et al. Popoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS One 6, e15925 (2011).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020); https://www.R-project.org/
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B 73, 3–36 (2011).
Google Scholar
Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 149 (2018).
Google Scholar
Dam, H. G. et al. Data and code repository for ‘Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification’. Zenodo https://doi.org/10.5281/zenodo.5115103 (2021).
Source: Ecology - nature.com