in

Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification

  • 1.

    Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).

    Article 
    CAS 

    Google Scholar 

  • 2.

    Bindoff, N. L. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 447–588 (IPCC, 2019).

  • 3.

    Pörtner, H.-O. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 35–74 (IPCC, 2019).

  • 4.

    Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Cai, W. J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4, 766–770 (2011).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C. & Gobler, C. J. Coastal ocean acidification: the other eutrophication problem. Estuar. Coast. Shelf Sci. 148, 1–13 (2014).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).

    Article 

    Google Scholar 

  • 8.

    Schlichting, C. D. & Pigliucci, M. Phenotypic Evolution: A Reaction Norm Perspective (Sinauer Associates, 1998).

  • 9.

    Kelly, M. W. & Hofmann, G. E. Adaptation and the physiology of ocean acidification. Funct. Ecol. 27, 980–990 (2013).

    Article 

    Google Scholar 

  • 10.

    Pespeni, M. H. et al. Evolutionary change during experimental ocean acidification. Proc. Natl Acad. Sci. USA 110, 6937–6942 (2013).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Thor, P. & Dupont, S. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob. Change Biol. 21, 2261–2271 (2015).

    Article 

    Google Scholar 

  • 12.

    Donelson, J. M., Salinas, S., Munday, P. L. & Shama, L. N. S. Transgenerational plasticity and climate change experiments: where do we go from here? Glob. Change Biol. 24, 13–34 (2018).

    Article 

    Google Scholar 

  • 13.

    Chevin, L. M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).

    Article 
    CAS 

    Google Scholar 

  • 14.

    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).

  • 15.

    Byrne, M. in Oceanography and Marine Biology: An Annual Review Vol. 49 (eds Gibson, R. N. et al.) Ch. 1 (CRC Press, 2011).

  • 16.

    Whiteley, N. M. Physiological and ecological responses of crustaceans to ocean acidification. Mar. Ecol. Prog. Ser. 430, 257–271 (2011).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Cripps, G., Lindeque, P. & Flynn, K. J. Have we been underestimating the effects of ocean acidification in zooplankton? Glob. Change Biol. 20, 3377–3385 (2014).

    Article 

    Google Scholar 

  • 18.

    Baumann, H. Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? Can. J. Zool. 97, 399–408 (2019).

    Article 

    Google Scholar 

  • 19.

    Gibbin, E. M. et al. Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan? J. Exp. Biol. 220, 551–563 (2017).

    Google Scholar 

  • 20.

    Gibbin, E. M., Massamba N’Siala, G., Chakravarti, L. J., Jarrold, M. D. & Calosi, P. The evolution of phenotypic plasticity under global change. Sci. Rep. 7, 17253 (2017).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Gonzalez, A., Ophelie, R., Ferriere, R. & Hochberg, M. E. Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Philos. Trans. R. Soc. Lond. B 368, 20120404 (2012).

    Article 

    Google Scholar 

  • 22.

    Bell, G. & Gonzalez, A. Evolutionary rescue can prevent extinction following environmental change. Ecol. Lett. 12, 942–948 (2009).

    Article 

    Google Scholar 

  • 23.

    Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).

    Article 

    Google Scholar 

  • 24.

    Hardy, A. The Open Sea: The World of Plankton (Fontana Collins, 1970).

  • 25.

    Huys, R. & Boxshall, G. A. Copepod Evolution (The Ray Society, 1991).

  • 26.

    Beaugrand, G. & Reid, P. C. Long-term changes in phytoplankton, zooplankton and salmon related to climate. Glob. Change Biol. 9, 801–817 (2003).

    Article 

    Google Scholar 

  • 27.

    Möllmann, C., Müller-Karulis, B., Kornilovs, G. & St John, M. A. Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback loops in a simple ecosystem. ICES J. Mar. Sci. 65, 302–310 (2008).

    Article 

    Google Scholar 

  • 28.

    Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Annu. Rev. Mar. Sci. 9, 413–444 (2017).

    Article 

    Google Scholar 

  • 29.

    Mauchline, J. (ed.) The Biology of Calanoid Copepods (Academic Press, 1998).

  • 30.

    Turner, J. T. The Feeding Ecology of Some Zooplankters That Are Important Prey Items of Larval Fish. NOAA NMFS Technical Report (1984).

  • 31.

    Rice, E., Dam, H. G. & Stewart, G. Impact of climate change on estuarine zooplankton: surface water warming in Long Island Sound is associated with changes in copepod size and community structure. Estuaries Coast 38, 13–23 (2015).

    Article 

    Google Scholar 

  • 32.

    Gobler, C. J. & Baumann, H. Hypoxia and acidification in marine ecosystems: coupled dynamics and effects on ocean life. Biol. Lett. 12, 20150976 (2016).

    Article 
    CAS 

    Google Scholar 

  • 33.

    Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. Lond. B 283, 20152592 (2016).

    Google Scholar 

  • 34.

    Burt, A. Perspective: the evolution of fitness. Evolution 49, 1–8 (1995).

    Google Scholar 

  • 35.

    Hendry, A. P. & Gonzalez, A. Whither adaptation? Biol. Philos. 23, 673–699 (2008).

    Article 

    Google Scholar 

  • 36.

    Arnold, S. J., Pfrender, M. E. & Jones, A. G. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112–113, 9–32 (2001).

    Article 

    Google Scholar 

  • 37.

    Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation (Sinauer Associates, 2001).

  • 38.

    Sasaki, M. C. & Dam, H. G. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Glob. Change Biol. 25, 4147–4164 (2019).

    Article 

    Google Scholar 

  • 39.

    Luikart, G., England, P. R., Tallmon, D., Jordan, S. & Taberlet, P. The power and promise of population genomics: from genotyping to genome typing. Nat. Rev. Genet. 4, 981–994 (2003).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Black, W. C. IV, Baer, C. F., Antolin, M. F. & DuTeau, N. M. Population genomics: genome-wide sampling of insect populations. Annu. Rev. Entomol. 46, 441–469 (2001).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Brennan, R. et al. Loss and recovery of transcriptional plasticity after long-term adaptation to global change conditions in a marine copepod. Preprint at bioRxiv https://doi.org/10.1101/2020.01.29.925396 (2020).

  • 42.

    Kingsolver, J. G. & Pfennig, D. W. Patterns and power of phenotypic selection in nature. Bioscience 57, 561–572 (2007).

    Article 

    Google Scholar 

  • 43.

    Crespi, B. J. & Bookstein, F. L. A path-analytic model for the measurement of selection on morphology. Evolution 43, 18–28 (1989).

    Article 

    Google Scholar 

  • 44.

    Pigliucci, M. & Kaplan, J. Making Sense of Evolution (Univ. Chicago Press, 2006); https://doi.org/10.7208/chicago/9780226668352.001.0001

  • 45.

    Bush, A. et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1478 (2016).

    Article 

    Google Scholar 

  • 46.

    Riebesell, U. & Gattuso, J. Lessons learned from ocean acidification research. Nat. Clim. Change 5, 2014–2016 (2015).

    Article 
    CAS 

    Google Scholar 

  • 47.

    Langer, J. A. F., Meunier, C. L., Ecker, U. & Horn, H. G. Acclimation and adaptation of the coastal calanoid copepod Acartia tonsa to ocean acidification: a long-term laboratory investigation. Mar. Ecol. Prog. Ser. 619, 35–51 (2019).

    CAS 
    Article 

    Google Scholar 

  • 48.

    De Wit, P., Dupont, S. & Thor, P. Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes. Evol. Appl. 9, 1112–1123 (2016).

    Article 
    CAS 

    Google Scholar 

  • 49.

    Chakravarti, L. J. et al. Can trans-generational experiments be used to enhance species resilience to ocean warming and acidification? Evol. Appl. 9, 1133–1146 (2016).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Carrier-Belleau, C., Drolet, D., McKindsey, C. W. & Archambault, P. Environmental stressors, complex interactions and marine benthic communities’ responses. Sci. Rep. 11, 4194 (2021).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Dam, H. G. & Baumann, H. in Climate Change Impacts on Fisheries and Aquaculture: A Global Analysis (eds Phillips, B. F. and Pérez-Ramírez, M.) 851–874 (Wiley, 2017).

  • 52.

    Bell, G. Evolutionary rescue and the limits of adaptation. Philos. Trans. R. Soc. Lond. B 368, 20120080 (2013).

    Article 

    Google Scholar 

  • 53.

    Falconer, D. S. Introduction to Quantitative Genetics (Longman Scientific and Technical, 1989).

  • 54.

    Angilletta, M. J. Jr Estimating and comparing thermal performance curves. J. Therm. Biol. 31, 541–545 (2006).

    Article 

    Google Scholar 

  • 55.

    Feinberg, L. R. & Dam, H. G. Effects of diet on dimensions, density and sinking rates of fecal pellets of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 175, 87–96 (1998).

    Article 

    Google Scholar 

  • 56.

    Pierrot, D., Lewis, E. & Wallace, D. W. R. MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, 2006); https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a

  • 57.

    Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean (p_{{mathrm{CO}}_2}) calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).

  • 58.

    Dickson, A. G. Standard potential of the reaction: AgCl(s) + 12H2 (g) = Ag(s) + HCl (aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Uppström, L. R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res. Oceanogr. Abstr. 21, 161–162 (1974).

    Article 

    Google Scholar 

  • 60.

    Murray, C. S. & Baumann, H. You better repeat it: complex CO2× temperature effects in Atlantic silverside offspring revealed by serial experimentation. Diversity 10, 69 (2018).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Schank, J. C. & Koehnle, T. J. Pseudoreplication is a Pseudoproblem. J. Comp. Psychol. 123, 421–433 (2009).

    Article 

    Google Scholar 

  • 62.

    Oksanen, L. Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 94, 27–38 (2001).

    Article 

    Google Scholar 

  • 63.

    Therneau, T. A Package for Survival Analysis in R. R package 3.2-11 (2021); https://CRAN.R-project.org/package=survival

  • 64.

    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

    Article 

    Google Scholar 

  • 65.

    Rosseel, Y. lvaan: an R package for structural equation modeling. J. Stat. Softw. https://doi.org/10.18637/jss.v048.i02 (2012).

  • 66.

    Epskamp, S., Stuber, S., Nak, J., Veenman, M. & Jorgensen, T. D. semPlot: Path Diagrams and Visual Analysis of Various SEM Packages’ Output. (2019); https://CRAN.R-project.org/package=semPlot

  • 67.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Jørgensen, T. S. et al. The genome and mRNA transcriptome of the cosmopolitan calanoid copepod Acartia tonsa Dana improve the understanding of copepod genome size evolution. Genome Biol. Evol. 11, 1440–1450 (2019).

    Article 
    CAS 

    Google Scholar 

  • 69.

    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  • 70.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    CAS 

    Google Scholar 

  • 71.

    Kofler, R. et al. Popoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS One 6, e15925 (2011).

    CAS 
    Article 

    Google Scholar 

  • 72.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020); https://www.R-project.org/

  • 73.

    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B 73, 3–36 (2011).

    Article 

    Google Scholar 

  • 74.

    Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 149 (2018).

    Article 

    Google Scholar 

  • 75.

    Dam, H. G. et al. Data and code repository for ‘Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification’. Zenodo https://doi.org/10.5281/zenodo.5115103 (2021).


  • Source: Ecology - nature.com

    The boiling crisis — and how to avoid it

    A statistics-based reconstruction of high-resolution global terrestrial climate for the last 800,000 years