in

Raptor breeding sites indicate high plant biodiversity in urban ecosystems

  • 1.

    Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B 281, 20133330 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Nielsen, A. B., Van Den Bosch, M., Maruthaveeran, S. & Van Den Bosch, C. K. Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosyst. 17, 305–327 (2014).

    Article 

    Google Scholar 

  • 4.

    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).

    Article 

    Google Scholar 

  • 5.

    Luck, G. W., Davidson, P., Boxall, D. & Smallbone, L. Relations between urban bird and plant communities and human well-being and connection to nature. Conserv. Biol. 25, 816–826 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    Soga, M. & Gaston, K. J. Extinction of experience: the loss of human–nature interactions. Front. Ecol. Environ. 14, 94–101 (2016).

    Article 

    Google Scholar 

  • 7.

    Dean, J., van Dooren, K. & Weinstein, P. Does biodiversity improve mental health in urban settings?. Med. Hypotheses 76, 877–880 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Knight, A. T. et al. Knowing but not doing: Selecting priority conservation areas and the research-implementation gap. Conserv. Biol. 22, 610–617 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Waldron, A. et al. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, 364–367 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Caro, T. M. Conservation by Proxy: Indicator, Umbrella, Keystone, Flagship and Other Surrogate Species (Island Press, 2010).

    Google Scholar 

  • 11.

    Sergio, F., Newton, I. & Marchesi, L. Top predators and biodiversity. Nature 236, 192 (2005).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Burgas, D., Byholm, P. & Parkkima, T. Raptors as surrogates of biodiversity along a landscape gradient. J. Appl. Ecol. 51, 786–794 (2014).

    Article 

    Google Scholar 

  • 13.

    Sergio, F., Newton, I., Marchesi, L. & Pedrini, P. Ecologically justified charisma: Preservation of top predators delivers biodiversity conservation. J. Appl. Ecol. 43, 1049–1055 (2006).

    Article 

    Google Scholar 

  • 14.

    Sergio, F. et al. Top predators as conservation tools: Ecological rationale, assumptions, and efficacy. Annu. Rev. Ecol. Evol. Syst. 39, 1–19 (2008).

    Article 

    Google Scholar 

  • 15.

    Sergio, F. Raptor monitoring: Challenges and benefits. Bird Study 65, S3–S3 (2018).

    Article 

    Google Scholar 

  • 16.

    Millsap, B. A., Cooper, M. E. & Holroyd, G. Legal considerations. In Raptor Research and Management Techniques (eds Bird, D. M. & Bildstein, K. L.) 365–382 (Hancock House Publishers, 2007).

    Google Scholar 

  • 17.

    Maciorowski, G., Jankowiak, Ł, Sparks, T. H., Polakowski, M. & Tryjanowski, P. Biodiversity hotspots at a small scale: The importance of eagles’ nests to many other animals. Ecology 102, e03220 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 18.

    Natsukawa, H. Raptor breeding sites as a surrogate for conserving high avian taxonomic richness and functional diversity in urban ecosystems. Ecol. Indic. 119, 106874 (2020).

    Article 

    Google Scholar 

  • 19.

    Natsukawa, H. Raptor breeding sites indicate high taxonomic and functional diversities of wintering birds in urban ecosystems. Urban For. Urban Green. 60, 127066 (2021).

    Article 

    Google Scholar 

  • 20.

    Sergio, F., Newton, I. & Marchesi, L. Top predators and biodiversity: Much debate, few data. J. Appl. Ecol. 45, 992–999 (2008).

    Article 

    Google Scholar 

  • 21.

    Estrada, C. G. & Rodríguez-Estrella, R. In the search of good biodiversity surrogates: Are raptors poor indicators in the Baja California Peninsula desert?. Anim. Conserv. 19, 360–368 (2016).

    Article 

    Google Scholar 

  • 22.

    Kenward, R. E. The Goshawk (T&A D Poyser, 2006).

    Google Scholar 

  • 23.

    Manning, A. D., Fischer, J. & Lindenmayer, D. B. Scattered trees are keystone structures–implications for conservation. Biol. Conserv. 132, 311–321 (2006).

    Article 

    Google Scholar 

  • 24.

    Ozanne, C. M. P. et al. Biodiversity meets the atmosphere: A global review of forest canopies. Science 301, 183–186 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Yan, Z. et al. Impervious surface area is a key predictor for urban plant diversity in a city undergone rapid urbanization. Sci. Total Environ. 650, 335–342 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Atauri, J. A., De Pablo, C. L., De Agar, P. M., Schmitz, M. F. & Pineda, F. D. Effects of management on understory diversity in the forest ecosystems of Northern Spain. Environ. Manag. 34, 819–828 (2004).

    Article 

    Google Scholar 

  • 27.

    Martín-Queller, E., Gil-Tena, A. & Saura, S. Species richness of woody plants in the landscapes of Central Spain: The role of management disturbances, environment and non-stationarity. J. Veg. Sci. 22, 238–250 (2011).

    Article 

    Google Scholar 

  • 28.

    Rodriguez, S. A., Kennedy, P. L. & Parker, T. H. Timber harvest and tree size near nests explains variation in nest site occupancy but not productivity in northern goshawks (Accipiter gentilis). For. Ecol. Manage. 374, 220–229 (2016).

    Article 

    Google Scholar 

  • 29.

    Rosich, J. et al. Northern Goshawk breeding sites indicate the presence of mature forest in Mediterranean pinewoods. For. Ecol. Manag. 479, 118602 (2021).

    Article 

    Google Scholar 

  • 30.

    Natsukawa, H., Ichinose, T. & Higuchi, H. Factors affecting breeding-site selection of Northern Goshawks at two spatial scales in urbanized areas. J. Raptor Res. 51, 417–428 (2017).

    Article 

    Google Scholar 

  • 31.

    Natsukawa, H. et al. Forest cover and open land drive the distribution and dynamics of the breeding sites for urban-dwelling Northern Goshawks. Urban For. Urban Green. 53, 126732 (2020).

    Article 

    Google Scholar 

  • 32.

    Boal, C. W. & Dykstra, C. R. Urban Raptors: Ecology and Conservation of Birds of Prey in Cities (Island Press, 2018).

    Book 

    Google Scholar 

  • 33.

    Burgas, D., Ovaskainen, O., Blanchet, F. G. & Byholm, P. The ghost of the hawk: Top predator shaping bird communities in space and time. Front. Ecol. Evol. 9, 638039 (2021).

    Article 

    Google Scholar 

  • 34.

    Byholm, P., Gunko, R., Burgas, D. & Karell, P. Losing your home: Temporal changes in forest landscape structure due to timber harvest accelerate Northern goshawk (Accipiter gentilis) nest stand losses. Ornis Fenn. 97, 1–11 (2020).

    Google Scholar 

  • 35.

    Ozaki, K. et al. A mechanistic approach to evaluation of umbrella species as conservation surrogates. Conserv. Biol. 20, 1507–1515 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Santangeli, A. et al. Voluntary non-monetary approaches for implementing conservation. Biol. Conserv. 197, 209–214 (2016).

    Article 

    Google Scholar 

  • 37.

    Kamal, S., Grodzińska-Jurczak, M. & Brown, G. Conservation on private land: A review of global strategies with a proposed classification system. J. Environ. Plan. Manage. 58, 576–597 (2015).

    Article 

    Google Scholar 

  • 38.

    Iwai, Y. Forestry and the Forest Industry in Japan (UBC Press, 2002).

    Google Scholar 

  • 39.

    Sirakaya, A., Cliquet, A. & Harris, J. Ecosystem services in cities: Towards the international legal protection of ecosystem services in urban environments. Ecosyst. Serv. 29, 205–212 (2018).

    Article 

    Google Scholar 

  • 40.

    Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).

    Article 

    Google Scholar 

  • 41.

    Kumar, N., Jhala, Y. V., Qureshi, Q., Gosler, A. G. & Sergio, F. Human-attacks by an urban raptor are tied to human subsidies and religious practices. Sci. Rep. 9, 1–10 (2019).

    Google Scholar 

  • 42.

    Mak, B., Francis, R.A. & Chadwick, M.A. Living in the concrete jungle: A review and socio-ecological perspective of urban raptor habitat quality in Europe. Urban Ecosyst. 21 (2021).

  • 43.

    Demographia. Demographia World Urban Areas, 16th annual edition. Available: http://www.demographia.com/db-worldua.pdf. Date of access February 20, 2021 (2020).

  • 44.

    Yang, J., Yan, P., He, R. & Song, X. Exploring land-use legacy effects on taxonomic and functional diversity of woody plants in a rapidly urbanizing landscape. Landsc. Urban Plan. 162, 92–103 (2017).

    Article 

    Google Scholar 

  • 45.

    Spellerberg, I. F. & Fedor, P. J. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’Index. Glob. Ecol. Biogeog. 12, 177–179 (2003).

    Article 

    Google Scholar 

  • 46.

    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).

    Article 

    Google Scholar 

  • 47.

    R Development Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

  • 48.

    Oksanen, J. et al. Vegan: Community ecology package. R package version 2, 5–5 (2019).

    Google Scholar 

  • 49.

    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

  • 50.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach (Springer, 2002).

    MATH 

    Google Scholar 

  • 51.

    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Article 

    Google Scholar 

  • 52.

    Betts, M. G., Diamond, A. W., Forbes, G. J., Villard, M. A. & Gunn, J. S. The importance of spatial autocorrelation, extent and resolution in predicting forest bird occurrence. Ecol. Model. 191, 197–224 (2006).

    Article 

    Google Scholar 

  • 53.

    Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • 54.

    Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30, 609–628 (2007).

    Article 

    Google Scholar 

  • 55.

    Harrell, F. E. rms: Regression Modeling Strategies. R package version 6.0–1 (2020).

  • 56.

    Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. J. Stat. Softw. 63, 1–36 (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    MIT Energy Initiative awards seven Seed Fund grants for early-stage energy research

    Worker-dependent gut symbiosis in an ant