in

Raptor breeding sites indicate high plant biodiversity in urban ecosystems

  • 1.

    Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B 281, 20133330 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Nielsen, A. B., Van Den Bosch, M., Maruthaveeran, S. & Van Den Bosch, C. K. Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosyst. 17, 305–327 (2014).

    Article 

    Google Scholar 

  • 4.

    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).

    Article 

    Google Scholar 

  • 5.

    Luck, G. W., Davidson, P., Boxall, D. & Smallbone, L. Relations between urban bird and plant communities and human well-being and connection to nature. Conserv. Biol. 25, 816–826 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    Soga, M. & Gaston, K. J. Extinction of experience: the loss of human–nature interactions. Front. Ecol. Environ. 14, 94–101 (2016).

    Article 

    Google Scholar 

  • 7.

    Dean, J., van Dooren, K. & Weinstein, P. Does biodiversity improve mental health in urban settings?. Med. Hypotheses 76, 877–880 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Knight, A. T. et al. Knowing but not doing: Selecting priority conservation areas and the research-implementation gap. Conserv. Biol. 22, 610–617 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Waldron, A. et al. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, 364–367 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Caro, T. M. Conservation by Proxy: Indicator, Umbrella, Keystone, Flagship and Other Surrogate Species (Island Press, 2010).

    Google Scholar 

  • 11.

    Sergio, F., Newton, I. & Marchesi, L. Top predators and biodiversity. Nature 236, 192 (2005).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Burgas, D., Byholm, P. & Parkkima, T. Raptors as surrogates of biodiversity along a landscape gradient. J. Appl. Ecol. 51, 786–794 (2014).

    Article 

    Google Scholar 

  • 13.

    Sergio, F., Newton, I., Marchesi, L. & Pedrini, P. Ecologically justified charisma: Preservation of top predators delivers biodiversity conservation. J. Appl. Ecol. 43, 1049–1055 (2006).

    Article 

    Google Scholar 

  • 14.

    Sergio, F. et al. Top predators as conservation tools: Ecological rationale, assumptions, and efficacy. Annu. Rev. Ecol. Evol. Syst. 39, 1–19 (2008).

    Article 

    Google Scholar 

  • 15.

    Sergio, F. Raptor monitoring: Challenges and benefits. Bird Study 65, S3–S3 (2018).

    Article 

    Google Scholar 

  • 16.

    Millsap, B. A., Cooper, M. E. & Holroyd, G. Legal considerations. In Raptor Research and Management Techniques (eds Bird, D. M. & Bildstein, K. L.) 365–382 (Hancock House Publishers, 2007).

    Google Scholar 

  • 17.

    Maciorowski, G., Jankowiak, Ł, Sparks, T. H., Polakowski, M. & Tryjanowski, P. Biodiversity hotspots at a small scale: The importance of eagles’ nests to many other animals. Ecology 102, e03220 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 18.

    Natsukawa, H. Raptor breeding sites as a surrogate for conserving high avian taxonomic richness and functional diversity in urban ecosystems. Ecol. Indic. 119, 106874 (2020).

    Article 

    Google Scholar 

  • 19.

    Natsukawa, H. Raptor breeding sites indicate high taxonomic and functional diversities of wintering birds in urban ecosystems. Urban For. Urban Green. 60, 127066 (2021).

    Article 

    Google Scholar 

  • 20.

    Sergio, F., Newton, I. & Marchesi, L. Top predators and biodiversity: Much debate, few data. J. Appl. Ecol. 45, 992–999 (2008).

    Article 

    Google Scholar 

  • 21.

    Estrada, C. G. & Rodríguez-Estrella, R. In the search of good biodiversity surrogates: Are raptors poor indicators in the Baja California Peninsula desert?. Anim. Conserv. 19, 360–368 (2016).

    Article 

    Google Scholar 

  • 22.

    Kenward, R. E. The Goshawk (T&A D Poyser, 2006).

    Google Scholar 

  • 23.

    Manning, A. D., Fischer, J. & Lindenmayer, D. B. Scattered trees are keystone structures–implications for conservation. Biol. Conserv. 132, 311–321 (2006).

    Article 

    Google Scholar 

  • 24.

    Ozanne, C. M. P. et al. Biodiversity meets the atmosphere: A global review of forest canopies. Science 301, 183–186 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Yan, Z. et al. Impervious surface area is a key predictor for urban plant diversity in a city undergone rapid urbanization. Sci. Total Environ. 650, 335–342 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Atauri, J. A., De Pablo, C. L., De Agar, P. M., Schmitz, M. F. & Pineda, F. D. Effects of management on understory diversity in the forest ecosystems of Northern Spain. Environ. Manag. 34, 819–828 (2004).

    Article 

    Google Scholar 

  • 27.

    Martín-Queller, E., Gil-Tena, A. & Saura, S. Species richness of woody plants in the landscapes of Central Spain: The role of management disturbances, environment and non-stationarity. J. Veg. Sci. 22, 238–250 (2011).

    Article 

    Google Scholar 

  • 28.

    Rodriguez, S. A., Kennedy, P. L. & Parker, T. H. Timber harvest and tree size near nests explains variation in nest site occupancy but not productivity in northern goshawks (Accipiter gentilis). For. Ecol. Manage. 374, 220–229 (2016).

    Article 

    Google Scholar 

  • 29.

    Rosich, J. et al. Northern Goshawk breeding sites indicate the presence of mature forest in Mediterranean pinewoods. For. Ecol. Manag. 479, 118602 (2021).

    Article 

    Google Scholar 

  • 30.

    Natsukawa, H., Ichinose, T. & Higuchi, H. Factors affecting breeding-site selection of Northern Goshawks at two spatial scales in urbanized areas. J. Raptor Res. 51, 417–428 (2017).

    Article 

    Google Scholar 

  • 31.

    Natsukawa, H. et al. Forest cover and open land drive the distribution and dynamics of the breeding sites for urban-dwelling Northern Goshawks. Urban For. Urban Green. 53, 126732 (2020).

    Article 

    Google Scholar 

  • 32.

    Boal, C. W. & Dykstra, C. R. Urban Raptors: Ecology and Conservation of Birds of Prey in Cities (Island Press, 2018).

    Book 

    Google Scholar 

  • 33.

    Burgas, D., Ovaskainen, O., Blanchet, F. G. & Byholm, P. The ghost of the hawk: Top predator shaping bird communities in space and time. Front. Ecol. Evol. 9, 638039 (2021).

    Article 

    Google Scholar 

  • 34.

    Byholm, P., Gunko, R., Burgas, D. & Karell, P. Losing your home: Temporal changes in forest landscape structure due to timber harvest accelerate Northern goshawk (Accipiter gentilis) nest stand losses. Ornis Fenn. 97, 1–11 (2020).

    Google Scholar 

  • 35.

    Ozaki, K. et al. A mechanistic approach to evaluation of umbrella species as conservation surrogates. Conserv. Biol. 20, 1507–1515 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Santangeli, A. et al. Voluntary non-monetary approaches for implementing conservation. Biol. Conserv. 197, 209–214 (2016).

    Article 

    Google Scholar 

  • 37.

    Kamal, S., Grodzińska-Jurczak, M. & Brown, G. Conservation on private land: A review of global strategies with a proposed classification system. J. Environ. Plan. Manage. 58, 576–597 (2015).

    Article 

    Google Scholar 

  • 38.

    Iwai, Y. Forestry and the Forest Industry in Japan (UBC Press, 2002).

    Google Scholar 

  • 39.

    Sirakaya, A., Cliquet, A. & Harris, J. Ecosystem services in cities: Towards the international legal protection of ecosystem services in urban environments. Ecosyst. Serv. 29, 205–212 (2018).

    Article 

    Google Scholar 

  • 40.

    Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).

    Article 

    Google Scholar 

  • 41.

    Kumar, N., Jhala, Y. V., Qureshi, Q., Gosler, A. G. & Sergio, F. Human-attacks by an urban raptor are tied to human subsidies and religious practices. Sci. Rep. 9, 1–10 (2019).

    Google Scholar 

  • 42.

    Mak, B., Francis, R.A. & Chadwick, M.A. Living in the concrete jungle: A review and socio-ecological perspective of urban raptor habitat quality in Europe. Urban Ecosyst. 21 (2021).

  • 43.

    Demographia. Demographia World Urban Areas, 16th annual edition. Available: http://www.demographia.com/db-worldua.pdf. Date of access February 20, 2021 (2020).

  • 44.

    Yang, J., Yan, P., He, R. & Song, X. Exploring land-use legacy effects on taxonomic and functional diversity of woody plants in a rapidly urbanizing landscape. Landsc. Urban Plan. 162, 92–103 (2017).

    Article 

    Google Scholar 

  • 45.

    Spellerberg, I. F. & Fedor, P. J. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’Index. Glob. Ecol. Biogeog. 12, 177–179 (2003).

    Article 

    Google Scholar 

  • 46.

    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).

    Article 

    Google Scholar 

  • 47.

    R Development Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

  • 48.

    Oksanen, J. et al. Vegan: Community ecology package. R package version 2, 5–5 (2019).

    Google Scholar 

  • 49.

    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

  • 50.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach (Springer, 2002).

    MATH 

    Google Scholar 

  • 51.

    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Article 

    Google Scholar 

  • 52.

    Betts, M. G., Diamond, A. W., Forbes, G. J., Villard, M. A. & Gunn, J. S. The importance of spatial autocorrelation, extent and resolution in predicting forest bird occurrence. Ecol. Model. 191, 197–224 (2006).

    Article 

    Google Scholar 

  • 53.

    Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • 54.

    Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30, 609–628 (2007).

    Article 

    Google Scholar 

  • 55.

    Harrell, F. E. rms: Regression Modeling Strategies. R package version 6.0–1 (2020).

  • 56.

    Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. J. Stat. Softw. 63, 1–36 (2015).

    Google Scholar 

  • The effects of low pH on the taste and amino acid composition of tiger shrimp

    Determinizing the contributions of human activities and climate change on greening in the Beijing–Tianjin–Hebei Region, China