in

Sedimentary ancient DNA reveals a threat of warming-induced alpine habitat loss to Tibetan Plateau plant diversity

  • 1.

    Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems; with 47 Tables. (Springer Science & Business Media, 2003).

  • 2.

    Alexander, J. M. et al. Plant invasions into mountains and alpine ecosystems: current status and future challenges. Alp. Bot. 126, 89–103 (2016).

    Article 

    Google Scholar 

  • 3.

    Xu, J. et al. The Melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv. Biol. 23, 520–530 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Liang, Q. et al. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. J. Biogeogr. 45, 1334–1344 (2018).

    Article 

    Google Scholar 

  • 5.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Zhang, D. C., Zhang, Y. H., Boufford, D. E. & Sun, H. Elevational patterns of species richness and endemism for some important taxa in the Hengduan Mountains, southwestern China. Biodivers. Conserv. 18, 699–716 (2009).

    Article 

    Google Scholar 

  • 8.

    Tang, Z., Wang, Z., Zheng, C. & Fang, J. Biodiversity in China’s mountains. Front. Ecol. Environ. 4, 347–352 (2006).

    Article 

    Google Scholar 

  • 9.

    Lomolino, Mark V. Elevation gradients of species-density: historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13 (2001).

    Article 

    Google Scholar 

  • 10.

    Colwell, RobertK. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Dirnböck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Change Biol. 17, 990–996 (2011).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Su, X., Han, W., Liu, G., Zhang, Y. & Lu, H. Substantial gaps between the protection of biodiversity hotspots in alpine grasslands and the effectiveness of protected areas on the Qinghai-Tibetan Plateau, China. Agric. Ecosyst. Environ. 278, 15–23 (2019).

    Article 

    Google Scholar 

  • 13.

    Zhang, Y. et al. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation. Plant Divers. (2020) https://doi.org/10.1016/j.pld.2020.09.001.

  • 14.

    Hopping, K. A., Knapp, A. K., Dorji, T. & Klein, J. A. Warming and land use change concurrently erode ecosystem services in Tibet. Glob. Change Biol. 24, 5534–5548 (2018).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Trivedi, M. R., Berry, P. M., Morecroft, M. D. & Dawson, T. P. Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Glob. Change Biol. 14, 1089–1103 (2008).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Gavin, D. G. et al. Climate refugia: joint inference from fossil records, species distribution models and phylogeography. N. Phytol. 204, 37–54 (2014).

    Article 

    Google Scholar 

  • 17.

    Birks, H. J. B. et al. Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. Rev. Palaeobot. Palynol. 228, 1–25 (2016).

    Article 

    Google Scholar 

  • 18.

    Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytol. 214, 924–942 (2017).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Kramer, A., Herzschuh, U., Mischke, S. & Zhang, C. Late glacial vegetation and climate oscillations on the southeastern Tibetan Plateau inferred from the Lake Naleng pollen profile. Quat. Res. 73, 324–335 (2010).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Kramer, A., Herzschuh, U., Mischke, S. & Zhang, C. Holocene treeline shifts and monsoon variability in the Hengduan Mountains (southeastern Tibetan Plateau), implications from palynological investigations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 286, 23–41 (2010).

    Article 

    Google Scholar 

  • 21.

    Hou, G., Yang, P., Cao, G., Chongyi, E. & Wang, Q. Vegetation evolution and human expansion on the Qinghai–Tibet Plateau since the Last Deglaciation. Quat. Int. 430, 82–93 (2017).

    Article 

    Google Scholar 

  • 22.

    Chen, F. et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: a comprehensive review. Quat. Sci. Rev. 243, 106444 (2020).

    Article 

    Google Scholar 

  • 23.

    Singh, U. M., Gupta, V., Rao, V. P., Sengar, R. S. & Yadav, M. K. A review on biological activities and conservation of endangered medicinal herb Nardostachys jatamansi. Int. J. Med. Arom. Plants 3, 113–124 (2013).

    CAS 

    Google Scholar 

  • 24.

    Li, X. H., Zhu, X. X., Niu, Y. & Sun, H. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China: Phylogenetic structure along elevational gradient. J. Syst. Evol. 52, 280–288 (2014).

    Article 

    Google Scholar 

  • 25.

    Kanz, C. et al. The EMBL nucleotide sequence database. Nucleic Acids Res. 33, D29–D33 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Yu, H. et al. Contrasting floristic diversity of the Hengduan mountains, the Himalayas and the Qinghai-Tibet Plateau Sensu Stricto in China. Front. Ecol. Evol. 8 (2020).

  • 27.

    Scheiner, S. M. et al. The underpinnings of the relationship of species richness with space and time. Ecol. Monogr. 81, 195–213 (2011).

    Article 

    Google Scholar 

  • 28.

    Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Opitz, S., Zhang, C., Herzschuh, U. & Mischke, S. Climate variability on the south-eastern Tibetan Plateau since the Lateglacial based on a multiproxy approach from Lake Naleng – comparing pollen and non-pollen signals. Quat. Sci. Rev. 115, 112–122 (2015).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Laliberté, E. et al. How does pedogenesis drive plant diversity? Trends Ecol. Evol. 28, 331–340 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Nichols, R. V. et al. Minimizing polymerase biases in metabarcoding. Mol. Ecol. Resour. 18, 927–939 (2018).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation. PLoS ONE 13, e0195403 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Niemeyer, B., Epp, L. S., Stoof-Leichsenring, K. R., Pestryakova, L. A. & Herzschuh, U. A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. Mol. Ecol. Resour. 17, e46–e62 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 35.

    Chen, F. H. et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science 347, 248–250 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Group, M. R. I. E. W. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Liang, E. et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 113, 4380–4385 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Alexander, J. M. et al. Lags in the response of mountain plant communities to climate change. Glob. Change Biol. 24, 563–579 (2018).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Zu, K. et al. Altitudinal biodiversity patterns of seed plants along Gongga Mountain in the southeastern Qinghai–Tibetan Plateau. Ecol. Evol. 9, 9586–9596 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Sun, H., Zhang, J., Deng, T. & Boufford, D. E. Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Divers. 39, 161–166 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. 106, 19729–19736 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Kramer, A., Herzschuh, U., Mischke, S. & Zhang, C. Late Quaternary environmental history of the south-eastern Tibetan Plateau inferred from the Lake Naleng non-pollen palynomorph record. Veg. Hist. Archaeobotany 19, 453–468 (2010).

    Article 

    Google Scholar 

  • 43.

    Stuiver, M. & Reimer, P. J. Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program. Radiocarbon 35, 215–230 (1993).

    Article 

    Google Scholar 

  • 44.

    Intcal04 Terrestrial Radiocarbon Age Calibration, 0–26 Cal Kyr BP. Radiocarbon 46, 1029–1058 (2004).

  • 45.

    Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14–e14 (2007).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 46.

    Coissac, E. OligoTag: A Program for Designing Sets of Tags for Next-Generation Sequencing of Multiplexed Samples. in Data Production and Analysis in Population Genomics: Methods and Protocols (eds. Pompanon, F. & Bonin, A.) 13–31 (Humana Press, 2012). https://doi.org/10.1007/978-1-61779-870-2_2.

  • 47.

    De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 48.

    Boyer, F. et al. obitools: a unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    SøNstebø, J. H. et al. Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate: TECHNICAL ADVANCES. Mol. Ecol. Resour. 10, 1009–1018 (2010).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 50.

    Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Soininen, E. M. et al. Highly overlapping winter diet in two sympatric lemming species revealed by DNA metabarcoding. PLoS ONE 10, e0115335 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Ficetola, G. F. et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Resour. 15, 543–556 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    R Core Team. R: A Language and Environment for Statistical Computing. (2019).

  • 54.

    Brach, A. R. & Song, H. eFloras: New directions for online floras exemplified by the Flora of China Project. TAXON 55, 188–192 (2006).

    Article 

    Google Scholar 

  • 55.

    Zhao, Y. et al. Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years. Sci. Adv. 6, eaay6193 (2020).

  • 56.

    Herzschuh, U. et al. Position and orientation of the westerly jet determined Holocene rainfall patterns in China. Nat. Commun. 10, 2376 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 57.

    Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Kessler, M. A., Anderson, R. S. & Stock, G. M. Modeling topographic and climatic control of east-west asymmetry in Sierra Nevada glacier length during the Last Glacial Maximum. J. Geophys. Res. Earth Surf. 111, F02002 (2006).

  • 60.

    Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).

    ADS 
    Article 

    Google Scholar 

  • 61.

    Braithwaite, R. J. From Doktor Kurowski’s Schneegrenze to our modern glacier equilibrium line altitude (ELA). Cryosphere 9, 2135–2148 (2015).

    ADS 
    Article 

    Google Scholar 

  • 62.

    Maussion, F. et al. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high asia reanalysis. J. Clim. 27, 1910–1927 (2014).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Anja, M.-C. et al. GPCC Climatology Version 2011 at 0.25°: Monthly Land-Surface Precipitation Climatology for Every Month and the Total Year from Rain-Gauges built on GTS-based and Historic Data. https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2011_025.

  • 64.

    Yuzhong, Y., Qingbai, W. & Hanbo, Y. Stable isotope variations in the ground ice of Beiluhe Basin on the Qinghai-Tibet Plateau. Quat. Int. 313–314, 85–91 (2013).

    Article 

    Google Scholar 

  • 65.

    Li, X. et al. Near-surface air temperature lapse rates in the mainland China during 1962–2011. J. Geophys. Res. Atmospheres 118, 7505–7515 (2013).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Revelle, W. psych: Procedures for Personality and Psychological Research, Northwestern University, Evanston, Illinois, USA. Northwest. Univ. (2018).

  • 67.

    Zimmermann, H. H. et al. Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia). Biogeosciences Discuss. 1–50 (2016) https://doi.org/10.5194/bg-2016-386.

  • 68.

    Oksanen, J. et al. vegan: Community Ecology Package. (2019).

  • 69.

    Hallett, L. M. et al. codyn: An r package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151 (2016).

    Article 

    Google Scholar 

  • 70.

    Barbosa, A. M., Brown, J. A., Jimenez-Valverde, A. & Real, R. modEvA: Model Evaluation and Analysis. R package version 1.3.2. (2016).

  • 71.

    Kuhn, M. caret: Classification and Regression Training. R package version 6.0–86. (2020).


  • Source: Ecology - nature.com

    Susan Solomon, scholar of atmospheric chemistry and environmental policy, delivers Killian Lecture

    Hydrologic variation influences stream fish assemblage dynamics through flow regime and drought