in

Selective feeding in Southern Ocean key grazers—diet composition of krill and salps

  • 1.

    Pakhomov, E. A., Froneman, P. W. & Perissinotto, R. Salp/krill interactions in the Southern Ocean: Spatial segregation and implications for the carbon flux. Deep Sea Res. II 49, 1881–1907 (2002).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Steinberg, D. K. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. I 101, 54–70 (2015).

    Article 

    Google Scholar 

  • 3.

    Whitehouse, M. J. et al. Role of krill versus bottom-up factors in controlling phytoplankton biomass in the northern Antarctic waters of South Georgia. Mar. Ecol. Prog. Ser. 393, 69–82 (2009).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Tarling, G. A. & Fielding, S. in Biology and Ecology of Antarctic krill (ed Siegel, V.) 279–319 (Springer International Publishing, 2016).

  • 5.

    Henschke, N., Everett, J. D., Richardson, A. J. & Suthers, I. M. Rethinking the role of salps in the ocean. Trends Ecol. Evol. 31, 720–733 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    Cavan, E. L. et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 10, 4742 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Belcher, A. et al. Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nat. Commun. 10, 889 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Phillips, B., Kremer, P. & Madin, L. P. Defecation by Salpa thompsoni and its contribution to vertical flux in the Southern Ocean. Mar. Biol. 156, 455–467 (2009).

    Article 

    Google Scholar 

  • 9.

    Siegel, V. & Watkins, J. L. in Biology and Ecology of Antarctic krill (ed Siegel, V.) 21–100 (Springer International Publishing, 2016).

  • 10.

    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).

    Article 

    Google Scholar 

  • 11.

    Vaughan, D. G. et al. Recent rapid regional climate warming on the Antarctic Peninsula. Clim. Change 60, 243–274 (2003).

    Article 

    Google Scholar 

  • 12.

    Ducklow, H. W. et al. Marine pelagic ecosystems: the West Antarctic Peninsula. Philos. Trans. R. Soc. B. 362, 67–94 (2007).

    Article 

    Google Scholar 

  • 13.

    Montes-Hugo, M. et al. Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science 323, 1470–1473 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Clarke, A. et al. Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos. T. R. Soc., B 362, 149–166 (2007).

    Article 

    Google Scholar 

  • 15.

    Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Loeb, V. et al. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387, 897–900 (1997).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).

    Article 

    Google Scholar 

  • 18.

    Cox, M. J. et al. No evidence for a decline in the density of Antarctic krill Euphausia superba Dana, 1850, in the Southwest Atlantic sector between 1976 and 2016. J. Crust. Biol. 38, 656–661 (2018).

  • 19.

    Foxton, P. The Distribution and Life-history of Salpa thompsoni Foxton with observations on a Related Species, Salpa gerlachei Foxton (The University Press, 1966).

  • 20.

    Bernard, K. S., Steinberg, D. K. & Schofield, O. M. E. Summertime grazing impact of the dominant macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. I 62, 111–122 (2012).

    Article 

    Google Scholar 

  • 21.

    Condon, R. H. et al. Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proc. Natl Acad. Sci. 108, 10225–10230 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Meyer, M. A. & Elsayed, S. Z. Grazing of Euphausia superba Dana on natural phytoplankton populations. Polar Biol. 1, 193–197 (1983).

    Article 

    Google Scholar 

  • 23.

    Haberman, K. L., Ross, R. M. & Quetin, L. B. Diet of the Antarctic krill (Euphausia superba Dana): II. Selective grazing in mixed phytoplankton assemblages. J. Exp. Mar. Biol. Ecol. 283, 97–113 (2003).

    Article 

    Google Scholar 

  • 24.

    Schmidt, K. & Atkinson, A. in Biology and Ecology of Antarctic krill (ed Siegel, V.) 175–224 (Springer International Publishing, 2016).

  • 25.

    Andersen, V. in The Biology of Pelagic Tunicates (ed Bone, Q.) 125–137 (Oxford University Press, 1998).

  • 26.

    Mitra, A. et al. Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton link. Prog. Oceanogr. 129, 176–199 (2014).

    Article 

    Google Scholar 

  • 27.

    Sailley, S. F., Polimene, L., Mitra, A., Atkinson, A. & Allen, J. I. Impact of zooplankton food selectivity on plankton dynamics and nutrient cycling. J. Plankton Res. 37, 519–529 (2015).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Hamner, W. M., Hamner, P. P., Strand, S. W. & Gilmer, R. W. Behavior of Antarctic krill, Euphausia superba: Chemoreception, feeding, schooling, and molting. Science 220, 433–435 (1983).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    DeMott, W. R. in Behavioural Mechanisms of Food Selection (ed Hughes, R. N.) 569–594 (Springer, 1990).

  • 30.

    Le Fèvre, J., Legendre, L. & Rivkin, R. B. Fluxes of biogenic carbon in the Southern Ocean: Roles of large microphagous zooplankton. J. Mar. Syst. 17, 325–345 (1998).

    Article 

    Google Scholar 

  • 31.

    Moline, M. A., Claustre, H., Frazer, T. K., Schofield, O. & Vernet, M. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob. Change Biol. 10, 1973–1980 (2004).

    Article 

    Google Scholar 

  • 32.

    Frischer, M. E. et al. Selective feeding and linkages to the microbial food web by the doliolid Dolioletta gegenbauri. Limnol. Oceanogr. 66, 1993–2010 (2021).

    Article 

    Google Scholar 

  • 33.

    Dadon-Pilosof, A., Lombard, F., Genin, A., Sutherland, K. R. & Yahel, G. Prey taxonomy rather than size determines salp diets. Limnol. Oceanogr. 64, 1996–2010 (2019).

    Article 

    Google Scholar 

  • 34.

    Metfies, K., Nicolaus, A., von Harbou, L., Bathmann, U. & Peeken, I. Molecular analyses of gut contents: elucidating the feeding of co-occurring salps in the Lazarev Sea from a different perspective. Antarct. Sci. 26, 5545–5553 (2014).

    Article 

    Google Scholar 

  • 35.

    Cleary, A. C., Durbin, E. G. & Casas, M. C. Feeding by Antarctic krill Euphausia superba in the West Antarctic Peninsula: differences between fjords and open waters. Mar. Ecol. Prog. Ser. 595, 39–54 (2018).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Passmore, A. J. et al. DNA as a dietary biomarker in Antarctic krill, Euphausia superba. Mar. Biotechnol. 8, 686–696 (2006).

    CAS 
    Article 

    Google Scholar 

  • 38.

    von Harbou, L. et al. Salps in the Lazarev Sea, Southern Ocean: I. Feeding dynamics. Mar. Biol. 158, 2009–2026 (2011).

    Article 

    Google Scholar 

  • 39.

    Vernet, M. et al. Primary production throughout austral fall, during a time of decreasing daylength in the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 452, 45–61 (2012).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Moreau, S. et al. Variability of the microbial community in the western Antarctic Peninsula from late fall to spring during a low ice cover year. Polar Biol. 33, 1599–1614 (2010).

    Article 

    Google Scholar 

  • 41.

    Selz, V. et al. Distribution of Phaeocystis antarctica-dominated sea ice algal communities and their potential to seed phytoplankton across the western Antarctic Peninsula in spring. Mar. Ecol. Prog. Ser. 586, 91–112 (2018).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Nichols, D. S., Nichols, P. D. & Sullivan, C. W. Fatty acid, sterol and hydrocarbon composition of Antarctic sea ice diatom communities during the spring bloom in McMurdo Sound. Antarct. Sci. 5, 271–278 (1993).

    Article 

    Google Scholar 

  • 43.

    Fahl, K. & Kattner, G. Lipid Content and fatty acid composition of algal communities in sea-ice and water from the Weddell Sea (Antarctica). Polar Biol. 13, 405–409 (1993).

    Article 

    Google Scholar 

  • 44.

    Boyd, C. M., Heyraud, M. & Boyd, C. N. Feeding of the Antarctic krill Euphausia superba. J. Crust. Biol. 4, 123–141 (1984).

    Article 

    Google Scholar 

  • 45.

    Bone, Q., Carré, C. & Chang, P. Tunicate feeding filters. J. Mar. Biol. Assoc. U. K. 83, 907–919 (2003).

    Article 

    Google Scholar 

  • 46.

    Nelson, M. M., Phleger, C. F., Mooney, B. D. & Nichols, P. D. Lipids of gelatinous Antarctic zooplankton: Cnidaria and Ctenophora. Lipids 35, 551–559 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Huntley, M. E., Sykes, P. F. & Marin, V. Biometry and trophodynamics of Salpa thompsoni Foxton (Tunicata: Thaliacea) near the Antarctic Peninsula in austral summer, 1983–1984. Polar Biol. 10, 59–70 (1989).

    Article 

    Google Scholar 

  • 48.

    Hopkins, T. L. Food web of an Antarctic midwater ecosystem. Mar. Biol. 89, 197–212 (1985).

    Article 

    Google Scholar 

  • 49.

    Paffenhöfer, G. A. & Köster, M. Digestion of diatoms by planktonic copepods and doliolids. Mar. Ecol. Prog. Ser. 297, 303–310 (2005).

    Article 

    Google Scholar 

  • 50.

    von Harbou, L. Trophodynamics of Salps in the Atlantic Southern Ocean. PhD thesis, University of Bremen (2009).

  • 51.

    Hargraves, P. E. The ebridian flagellates Ebria and Hermesinum. Plankton Biol. Ecol. 49, 9–16 (2002).

    Google Scholar 

  • 52.

    Cavan, E. L. et al. Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets. Geophys. Res. Lett. 42, 821–830 (2015).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Smith, K. L. Jr. et al. Large salp bloom export from the upper ocean and benthic community response in the abyssal northeast Pacific: day to week resolution. Limnol. Oceanogr. 59, 745–757 (2014).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Cadée, G. C., González, H. & Schnack-Schiel, S. B. Krill diet affects faecal string settling. Polar Biol. 12, 75–80 (1992).

    Google Scholar 

  • 55.

    Ploug, H., Iversen, M. H., Koski, M. & Buitenhuis, E. T. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite. Limnol. Oceanogr. 53, 469–476 (2008).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Atkinson, A., Schmidt, K., Fielding, S., Kawaguchi, S. & Geissler, P. A. Variable food absorption by Antarctic krill: Relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets. Deep Sea Res. II 59-60, 147–158 (2012).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Schmidt, K., Atkinson, A., Pond, D. W. & Ireland, L. C. Feeding and overwintering of Antarctic krill across its major habitats: The role of sea ice cover, water depth, and phytoplankton abundance. Limnol. Oceanogr. 59, 17–36 (2014).

    Article 

    Google Scholar 

  • 58.

    Cripps, G. C., Watkins, J. L., Hill, H. J. & Atkinson, A. Fatty acid content of Antarctic krill Euphausia superba at South Georgia related to regional populations and variations in diet. Mar. Ecol. Prog. Ser. 181, 177–188 (1999).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Schmidt, K., Atkinson, A., Petzke, K.-J., Voss, M. & Pond, D. W. Protozoans as a food source for Antarctic krill, Euphausia superba: Complementary insights from stomach content, fatty acids, and stable isotopes. Limnol. Oceanogr. 51, 2409–2427 (2006).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Hagen, W., Van Vleet, E. S. & Kattner, G. Seasonal lipid storage as overwintering strategy of Antarctic krill. Mar. Ecol. Prog. Ser. 134, 85–89 (1996).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Kawaguchi, S. & Takahashi, Y. Antarctic krill (Euphausia superba Dana) eat salps. Polar Biol. 16, 479–481 (1996).

    Google Scholar 

  • 62.

    Clarke, L. J., Bestley, S., Bissett, A. & Deagle, B. E. A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J. 13, 734–737 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Coats, D. W. & Park, M. G. Parasitism of photosynthetic dinoflagellates by three strains of Amoebophrya (Dinophyta): Parasite survival, infectivity, generation time, and host specificity. J. Phycol. 38, 520–528 (2002).

    Article 

    Google Scholar 

  • 64.

    Sutherland, K. R., Madin, L. P. & Stocker, R. Filtration of submicrometer particles by pelagic tunicates. Proc. Natl Acad. Sci. 107, 15129–15134 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Gómez-Gutiérrez, J. & Morales-Avila, J. R. in Biology and Ecology of Antarctic krill (ed Siegel, V.) 351–387 (Springer International Publishing, 2006).

  • 66.

    Cleary, A. C., Casas, M. C., Durbin, E. G. & Gómez-Gutiérrez, J. Parasites in Antarctic krill guts inferred from DNA sequences. Antarct. Sci. 31, 16–22 (2019).

    Article 

    Google Scholar 

  • 67.

    Zamora-Terol, S., Novotny, A. & Winder, M. Molecular evidence of host-parasite interactions between zooplankton and Syndiniales. Aquat. Ecol. 55, 125–134 (2021).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Kawaguchi, S., Ichii, T. & Naganobu, M. Do krill and salps compete? Contrary evidence from the krill fisheries. CCAMLR Sci. 5, 205–216 (1998).

    Google Scholar 

  • 69.

    Fadeev, E. et al. Microbial communities in the east and west Fram Strait during sea ice melting season. Front. Mar. Sci. 5, 429 (2018).

    Article 

    Google Scholar 

  • 70.

    Vestheim, H. & Jarman, S. N. Blocking primers to enhance PCR amplification of rare sequences in mixed samples – a case study on prey DNA in Antarctic krill stomachs. Front. Zool. 5, 12 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 71.

    Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • 73.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Callahan, B. DADA2 Pipeline Tutorial (1.16), available online: https://benjjneb.github.io/dada2/tutorial.html. Accessed: 3 Feb 2020.

  • 75.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 3 (2011).

    Article 

    Google Scholar 

  • 76.

    Guillou, L. et al. The protist ribosomal reference database (PR2): A catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Gong, W. & Marchetti, A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front. Mar. Sci. 6, 219 (2019).

    Article 

    Google Scholar 

  • 78.

    Metfies, K. et al. Uncovering the intricacies of microbial community dynamics at Helgoland Roads at the end of a spring bloom using automated sampling and 18S meta-barcoding. PLoS ONE 15, e0233921 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Catlett, D. et al. Evaluation of accuracy and precision in an amplicon sequencing workflow for marine protist communities. Limnol. Oceanogr. Methods 18, 20–40 (2019).

    Article 

    Google Scholar 

  • 80.

    Kattner, G. & Fricke, H. S. G. Simple gas-liquid-chromatographic method for the simultaneous determination of fatty-acids and alcohols in wax esters of marine organisms. J. Chromatogr. 361, 263–268 (1986).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Palarea-Albaladejo, J. & Martín-Fernández, J. A. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemometrics Intell. Lab. Syst. 143, 85–96 (2015).

    CAS 
    Article 

    Google Scholar 

  • 83.

    Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G. & Gloor, G. B. ANOVA-Like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS ONE 8, e67019 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Quinn, T. P., Richardson, M. F., Lovell, D. & Crowley, T. M. propr: an R-package for identifying proportionally abundant features using compositional data analysis. Sci. Rep. 7, 16252 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 85.

    Bian, G. et al. The gut microbiota of healthy aged chinese is similar to that of the healthy young. mSphere 2, e00327–00317 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    Gloor, G. B. & Reid, G. Compositional analysis: A valid approach to analyze microbiome high-throughput sequencing data. Can. J. Microbiol. 62, 692–703 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 87.

    Borstein, S. R. dietr: An R package for calculating fractional trophic levels from quantitative and qualitative diet data. Hydrobiologia 847, 4285–4294 (2020).

    Article 

    Google Scholar 

  • 88.

    Lechowicz, M. J. The sampling characteristics of electivity indices. Oecologia 52, 22–30 (1982).

    PubMed 
    Article 

    Google Scholar 

  • 89.

    Dalsgaard, J., St John, M., Kattner, G., Muller-Navarra, D. & Hagen, W. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46, 225–340 (2003).

    PubMed 
    Article 

    Google Scholar 

  • 90.

    Graeve, M., Kattner, G. & Hagen, W. Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: Experimental evidence of trophic markers. J. Exp. Mar. Biol. Ecol. 182, 97–110 (1994).

    CAS 
    Article 

    Google Scholar 

  • 91.

    Kharlamenko, V. I., Zhukova, N. V., Khotimchenko, S. V., Svetashev, V. I. & Kamenev, G. M. Fatty acids as markers of food sources in a shallow-water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Mar. Ecol. Prog. Ser. 120, 231–241 (1995).

    CAS 
    Article 

    Google Scholar 

  • 92.

    Greenacre, M. Compositional Data Analysis in Practice (CRC Press, Taylor & Francis Group, 2018).

  • 93.

    Suh, H.-L. & Nemoto, T. Comparative morphology of filtering structure of five species of Euphausia (Euphausiacea, Crustacea) from the Antarctic Ocean. Proc. NIPR Symp. Polar Biol. 1, 72–83 (1987).

    Google Scholar 

  • 94.

    Alldredge, A. L. & Madin, L. P. Pelagic tunicates: unique herbivores in the marine plankton. Bioscience 32, 655–663 (1982).

    Article 

    Google Scholar 

  • 95.

    Kelly, P. S. The Ecological Role of Salpa Thompsoni in the Kerguelen Plateau Region of the Southern Ocean: A First Comprehensive Evaluation. PhD thesis, University of Tasmania (2019).

  • 96.

    Ericson, J. A. et al. Seasonal and interannual variations in the fatty acid composition of adult Euphausia superba Dana, 1850 (Euphausiacea) samples derived from the Scotia Sea krill fishery. J. Crust. Biol. 38, 662–672 (2018).

    Google Scholar 

  • 97.

    Martin, D. L., Ross, R. M., Quetin, L. B. & Murray, A. E. Molecular approach (PCR-DGGE) to diet analysis in young Antarctic krill Euphausia superba. Mar. Ecol. Prog. Ser. 319, 155–165 (2006).

    CAS 
    Article 

    Google Scholar 

  • 98.

    Matsuoka, K. et al. Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands. Environ. Model. Softw. 140, 105015 (2021).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Continuous warming shift greening towards browning in the Southeast and Northwest High Mountain Asia

    Non-diphtheriae Corynebacterium species are associated with decreased risk of pneumococcal colonization during infancy