in

Separate and combined Hanseniaspora uvarum and Metschnikowia pulcherrima metabolic volatiles are attractive to Drosophila suzukii in the laboratory and field

  • 1.

    Bolda, M. P., Goodhue, R. E. & Zalom, F. G. Spotted wing drosophila: Potential economic impact of a newly established pest. Agric. Resour. Econ. Update 13, 5–8 (2010).

    Google Scholar 

  • 2.

    Calabria, G., Máca, J., Bächli, G., Serra, L. & Pascual, M. First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J. Appl. Entomol. 136, 139–147 (2012).

    Article  Google Scholar 

  • 3.

    Harris, A. & Shaw, B. First record of Drosophila suzukii (Matsumura) (Diptera, Drosophilidae) in Great Britain. Dipterists Digest. 21, 189–192 (2014).

    Google Scholar 

  • 4.

    Atallah, J., Teixeira, L., Salazar, R., Zaragoza, G. & Kopp, A. The making of a pest: The evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc. R. Soc. B Biol. Sci. 281, 20132840. https://doi.org/10.1098/rspb.2013.2840 (2014).

    Article  Google Scholar 

  • 5.

    Rombaut, A. et al. Invasive Drosophila suzukii facilitates Drosophila melanogaster infestation and sour rot outbreaks in the vineyards. R. Soc. Open Sci. 4, 170117. https://doi.org/10.1098/rsos.170117 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Gress, B. E. & Zalom, F. G. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. Pest Manag. Sci. 75, 1270–1276. https://doi.org/10.1002/ps.5240 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 7.

    Lee, K. P. et al. Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc. Natl. Acad. Sci. 105, 2498–2503 (2008).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Piper, M. D. W. et al. A holidic medium for Drosophila melanogaster. Nat. Methods 11, 100–105. https://doi.org/10.1038/nmeth.2731 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 9.

    Grangeteau, C. et al. Yeast quality in juvenile diet affects Drosophila melanogaster adult life traits. Sci. Rep. 8, 13070. https://doi.org/10.1038/s41598-018-31561-9 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Rohlfs, M. & Kürschner, L. Saprophagous insect larvae, Drosophila melanogaster, profit from increased species richness in beneficial microbes. J. Appl. Entomol. 134, 667–671. https://doi.org/10.1111/j.1439-0418.2009.01458.x (2009).

    Article  Google Scholar 

  • 11.

    Hardin, J. A., Kraus, D. A. & Burrack, H. J. Diet quality mitigates intraspecific larval competition in Drosophila suzukii. Entomol. Exp. Appl. 156, 59–65. https://doi.org/10.1111/eea.12311 (2015).

    CAS  Article  Google Scholar 

  • 12.

    Lewis, M. T. & Hamby, K. A. Differential impacts of yeasts on feeding behavior and development in larval Drosophila suzukii (Diptera:Drosophilidae). Sci. Rep. 9, 13370. https://doi.org/10.1038/s41598-019-48863-1 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Bellutti, N. et al. Dietary yeast affects preference and performance in Drosophila suzukii. J. Pest. Sci. 91, 651–660 (2018).

    Article  Google Scholar 

  • 14.

    Buser, C. C., Newcomb, R. D., Gaskett, A. C. & Goddard, M. R. Niche construction initiates the evolution of mutualistic interactions. Ecol. Lett. 17, 1257–1264. https://doi.org/10.1111/ele.12331 (2014).

    Article  PubMed  Google Scholar 

  • 15.

    Günther, C. S., Knight, S. J., Jones, R. & Goddard, M. R. Are Drosophila preferences for yeasts stable or contextual?. Ecol. Evol. 9, 8075–8086. https://doi.org/10.1002/ece3.5366 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Christiaens, J. F. et al. The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors. Cell Rep. 9, 425–432. https://doi.org/10.1016/j.celrep.2014.09.009 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    Palanca, L., Gaskett, A. C., Günther, C. S., Newcomb, R. D. & Goddard, M. R. Quantifying variation in the ability of yeasts to attract Drosophila melanogaster. PLoS ONE 8, e75332. https://doi.org/10.1371/journal.pone.0075332 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Scheidler, N. H., Liu, C., Hamby, K. A., Zalom, F. G. & Syed, Z. Volatile codes: Correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci. Rep. 5, 1–13. https://doi.org/10.1038/srep14059 (2015).

    CAS  Article  Google Scholar 

  • 19.

    Becher, P. G. et al. Chemical signaling and insect attraction is a conserved trait in yeasts. Ecol. Evol. 8, 2962–2974. https://doi.org/10.1002/ece3.3905 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 20.

    Chandler, J. A., Eisen, J. A. & Kopp, A. Yeast communities of diverse Drosophila species: Comparison of two symbiont groups in the same hosts. Appl. Environ. Microbiol. 78, 7327–7336. https://doi.org/10.1128/AEM.01741-12 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 21.

    Lam, S. S. T. H. & Howell, K. S. Drosophila-associated yeast species in vineyard ecosystems. FEMS Microbiol. Lett. 362, 1–7. https://doi.org/10.1093/femsle/fnv170 (2015).

    CAS  Article  Google Scholar 

  • 22.

    Hamby, K. A., Hernández, A., Boundy-Mills, K. & Zalom, F. G. Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries. Appl. Environ. Microbiol. 78, 4869–4873. https://doi.org/10.1128/AEM.00841-12 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Lewis, M. T., Koivunen, E. E., Swett, C. L. & Hamby, K. A. Associations between Drosophila suzukii (Diptera: Drosophilidae) and fungi in raspberries. Environ. Entomol. 27, 383–392. https://doi.org/10.1093/ee/nvy167 (2018).

    Article  Google Scholar 

  • 24.

    Fountain, M. T. et al. Alimentary microbes of winter-form Drosophila suzukii. Insect Mol. Biol. 27, 383–392. https://doi.org/10.1111/imb.12377 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 25.

    Vadkertiová, R., Molnárová, J., Vránová, D. & Sláviková, E. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees. Can. J. Microbiol. 58, 1344–1352. https://doi.org/10.1139/cjm-2012-0468 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 26.

    Barata, A., Malfeito-Ferreira, M. & Loureiro, V. Changes in sour rotten grape berry microbiota during ripening and wine fermentation. Int. J. Food Microbiol. 154, 152–161. https://doi.org/10.1016/J.IJFOODMICRO.2011.12.029 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 27.

    Lasa, R. et al. Yeast species, strains, and growth media mediate attraction of Drosophila suzukii (Diptera: Drosophilidae). Insects 10, 228–228. https://doi.org/10.3390/insects10080228 (2019).

    Article  PubMed Central  Google Scholar 

  • 28.

    Noble, R. et al. Improved insecticidal control of spotted wing drosophila (Drosophila suzukii) using yeast and fermented strawberry juice baits. Crop Protect. https://doi.org/10.1016/J.CROPRO.2019.104902 (2019).

    Article  Google Scholar 

  • 29.

    Hoang, D., Kopp, A. & Chandler, J. A. Interactions between Drosophila and its natural yeast symbionts—Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?. PeerJ 3, e1116. https://doi.org/10.7717/peerj.1116 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Taylor, M. W., Tsai, P., Anfang, N., Ross, H. A. & Goddard, M. R. Pyrosequencing reveals regional differences in fruit-associated fungal communities. Environ. Microbiol. 16, 2848–2858. https://doi.org/10.1111/1462-2920.12456 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Abdelfattah, A., Wisniewski, M., Li Destri Nicosia, M. G., Cacciola, S. O. & Schena, L. Metagenomic analysis of fungal diversity on strawberry plants and the effect of management practices on the fungal community structure of aerial organs. PLoS ONE 11, e0160470. https://doi.org/10.1371/journal.pone.0160470 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Dobzhansky, T., Cooper, D. M., Phaff, H. J., Knapp, E. P. & Carson, H. L. Differential attraction of species of Drosophila to different species of yeasts. Ecology 37, 544–550. https://doi.org/10.2307/1930178 (1956).

    Article  Google Scholar 

  • 33.

    Günther, C. S. & Goddard, M. R. Do yeasts and Drosophila interact just by chance?. Fungal Ecol. 38, 37–43. https://doi.org/10.1016/J.FUNECO.2018.04.005 (2018).

    Article  Google Scholar 

  • 34.

    Günther, C. S., Goddard, M. R., Newcomb, R. D. & Buser, C. C. The context of chemical communication driving a mutualism. J. Chem. Ecol. 41, 929–936. https://doi.org/10.1007/s10886-015-0629-z (2015).

    CAS  Article  PubMed  Google Scholar 

  • 35.

    Schiabor, K. M., Quan, A. S. & Eisen, M. B. Saccharomyces cerevisiae mitochondria are required for optimal attractiveness to Drosophila melanogaster. PLoS ONE 9, e113899. https://doi.org/10.1371/journal.pone.0113899 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Gayevskiy, V. & Goddard, M. R. Geographic delineations of yeast communities and populations associated with vines and wines in New Zealand. ISME J. 6, 1281–1290 (2012).

    CAS  Article  Google Scholar 

  • 37.

    Bokulich, N. A., Thorngate, J. H., Richardson, P. M. & Mills, D. A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. 111, E139–E148. https://doi.org/10.1073/PNAS.1317377110 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 38.

    Martins, G. et al. Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing grape berries during the ripening process. Int. J. Food Microbiol. 177, 21–28. https://doi.org/10.1016/J.IJFOODMICRO.2014.02.002 (2014).

    Article  PubMed  Google Scholar 

  • 39.

    Cordero-Bueso, G. et al. Influence of the farming system and vine variety on yeast communities associated with grape berries. Int. J. Food Microbiol. 145, 132–139. https://doi.org/10.1016/J.IJFOODMICRO.2010.11.040 (2011).

    Article  PubMed  Google Scholar 

  • 40.

    Cha, D. H., Adams, T., Rogg, H. & Landolt, P. J. Identification and field evaluation of fermentation volatiles from wine and vinegar that mediate attraction of spotted wing drosophila, Drosophila suzukii. J. Chem. Ecol. 38, 1419–1431. https://doi.org/10.1007/s10886-012-0196-5 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 41.

    Cha, D. H. et al. A four-component synthetic attractant for Drosophila suzukii (Diptera: Drosophilidae) isolated from fermented bait headspace. Pest Manag. Sci. 70, 324–331. https://doi.org/10.1002/ps.3568 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 42.

    Faucher, C. P., Hilker, M. & de Bruyne, M. Interactions of carbon dioxide and food odours in Drosophila: Olfactory hedonics and sensory neuron properties. PLoS ONE 8, e56361 (2013).

    ADS  CAS  Article  Google Scholar 

  • 43.

    Liti, G. et al. Population genomics of domestic and wild yeasts. Nature 458, 337–341 (2009).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Knight, S., Klaere, S., Fedrizzi, B. & Goddard, M. R. Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Sci. Rep. 5, 1–10. https://doi.org/10.1038/srep14233 (2015).

    CAS  Article  Google Scholar 

  • 45.

    Albertin, W. et al. Hanseniaspora uvarum from winemaking environments show spatial and temporal genetic clustering. Front. Microbiol. 6, 1569 (2016).

    Article  Google Scholar 

  • 46.

    Shearer, P. W. et al. Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC Ecol. 16, 11. https://doi.org/10.1186/s12898-016-0070-3 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Tochen, S. et al. Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ. Entomol. 43, 501–510. https://doi.org/10.1603/EN13200 (2014).

    Article  PubMed  Google Scholar 

  • 48.

    Ryan, G. D., Emiljanowicz, L., Wilkinson, F., Kornya, M. & Newman, J. A. Thermal tolerances of the spotted-wing drosophila Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol 109, 746–752. https://doi.org/10.1093/jee/tow006 (2016).

    Article  PubMed  Google Scholar 

  • 49.

    Plantamp, C., Estragnat, V., Fellous, S., Desouhant, E. & Gibert, P. Where and what to feed? Differential effects on fecundity and longevity in the invasive Drosophila suzukii. Basic Appl. Ecol. 19, 56–66. https://doi.org/10.1016/j.baae.2016.10.005 (2017).

    Article  Google Scholar 

  • 50.

    Anfang, N., Brajkovich, M. & Goddard, M. R. Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon Blanc. Aust. J. Grape Wine Res. 15, 1–8 (2009).

    CAS  Article  Google Scholar 

  • 51.

    Fischer, C. et al. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior. eLife 6, e18855. https://doi.org/10.7554/eLife.18855 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 52.

    Mori, B. A. et al. Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J. Appl. Ecol. 54, 170–177. https://doi.org/10.1111/1365-2664.12688 (2017).

    Article  Google Scholar 

  • 53.

    Shaw, B., Brain, P., Wijnen, H. & Fountain, M. T. Reducing Drosophila suzukii emergence through inter-species competition. Pest Manag. Sci. 74, 149–160. https://doi.org/10.1002/ps.4836 (2018).

    CAS  Article  Google Scholar 

  • 54.

    Cini, A., Ioriatti, C. & Anfora, G. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull. Insectol. 65, 149–160 (2012).

    Google Scholar 

  • 55.

    Crawley, M. J. The R book (Wiley, New York, 2013).

    Google Scholar 

  • 56.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).

    Google Scholar 

  • 57.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 58.

    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Estimated marginal means, aka least-squares means. R package version 1.3. 2. (2019).

  • 59.

    Harrell, F. E., et al. Hmisc: Harrell Miscellaneous. R package version 4.3–1. (2020).


  • Source: Ecology - nature.com

    Stoichiometric niche, nutrient partitioning and resource allocation in a solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92