in

Simulated atmospheric nitrogen deposition inhibited the leaf litter decomposition of Cinnamomum migao H. W. Li in Southwest China

  • 1.

    Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Zhou, X., Zhang, Y. & Downing, A. Non-linear response of microbial activity across a gradient of nitrogen addition to a soil from the gurbantunggut desert, northwestern China. Soil Biol. Biochem. 47, 67–77 (2012).

    CAS  Article  Google Scholar 

  • 3.

    Liu, X. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 4.

    Fang, Y. T., Gundersen, P., Mo, J. M. & Zhu, W. X. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of south China under high air pollution. Biogeosciences 5, 339–352 (2008).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Hoorens, B., Aerts, R. & Stroetenga, M. Does initial litter chemistry explain litter mixture effects on decomposition?. Oecologia 137, 578–586 (2003).

    ADS  PubMed  Article  Google Scholar 

  • 6.

    Passarinho, J. A. P., Lamosa, P., Baeta, J. P., Santos, H. & Ricardo, C. P. P. Annual changes in the concentration of minerals and organic compounds of Quercus suber leaves. Physiol. Plantarum 127, 100–110 (2006).

    CAS  Article  Google Scholar 

  • 7.

    Shen, F. F. et al. Litterfall ecological stoichiometry and soil available nutrients under long-term nitrogen deposition in a Chinese fir plantation. Acta Ecol. Sin. 38, 7477–7487 (2018).

    Google Scholar 

  • 8.

    Huangfu, C. & Wei, Z. Nitrogen addition drives convergence of leaf litter decomposition rates between Flaveria bidentis and native plant. Plant Ecol. 219, 1355–1368 (2018).

    Article  Google Scholar 

  • 9.

    Vivanco, L. & Austin, A. Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina. Global Change Biol. 17, 1963–1974 (2011).

    ADS  Article  Google Scholar 

  • 10.

    Li, H., Wei, Z., Huangfu, C., Chen, X. & Yang, D. Litter mixture dominated by leaf litter of the invasive species, Flaveria bidentis, accelerates decomposition and favors nitrogen release. J. Plant Res. 130, 167–180 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Aerts, R. D. C. H. Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78, 244–260 (1997).

    Article  Google Scholar 

  • 12.

    Osono, T. & Takeda, H. Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecol. Res. 19, 593–602 (2004).

    Article  Google Scholar 

  • 13.

    Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R. & Wood, S. A. Understanding the dominant controls on litter decomposition. J. Ecol. 104, 229–238 (2016).

    CAS  Article  Google Scholar 

  • 14.

    García-Palacios, P., Shaw, E. A., Wall, D. H. & Hättenschwiler, S. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol. Lett. 19, 554–563 (2016).

    PubMed  Article  Google Scholar 

  • 15.

    Song, C., Liu, D., Yang, G., Song, Y. & Mao, R. Effect of nitrogen addition on decomposition of Calamagrostis angustifolia litters from freshwater marshes of northeast China. Ecol. Eng. 37, 1578–1582 (2011).

    Article  Google Scholar 

  • 16.

    Zhang, D., Hui, D., Luo, Y. & Zhou, G. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J. Plant Ecol. 1, 85–93 (2008).

    Article  Google Scholar 

  • 17.

    Chen, F. et al. Nitrogen deposition effect on forest litter decomposition is interactively regulated by endogenous litter quality and exogenous resource supply. Plant Soil. 437, 413 (2019).

    CAS  Article  Google Scholar 

  • 18.

    Wang, Q., Kwak, J., Choi, W. & Chang, S. X. Long-term N and S addition and changed litter chemistry do not affect trembling aspen leaf litter decomposition, elemental composition and enzyme activity in a boreal forest. Environ. Pollut. 250, 143–154 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Hou, S. et al. Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland. New Phytol. 229, 296–307 (2020).

    PubMed  Article  Google Scholar 

  • 20.

    Yu, Z. et al. Nitrogen addition enhances home-field advantage during litter decomposition in subtropical forest plantations. Soil Biol. Biochem. 90, 188–196 (2015).

    CAS  Article  Google Scholar 

  • 21.

    Pichon, N. et al. Decomposition disentangled: A test of the multiple mechanisms by which nitrogen enrichment alters litter decomposition. Funct. Ecol. 34, 1485–1496 (2020).

    Article  Google Scholar 

  • 22.

    Hobbie, S. et al. Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol. Monogr. 82, 389–405 (2012).

    Article  Google Scholar 

  • 23.

    Knops, J., Naeem, S. & Reich, P. The impact of elevated CO2, increased nitrogen availability and biodiversity on plant tissue quality and decomposition. Global Change Biol. 13, 1960–1971 (2007).

    ADS  Article  Google Scholar 

  • 24.

    Prescott, C. E. Does nitrogen availability control rates of litter decomposition in forests?. Plant Soil. 168, 83–88 (1995).

    Article  Google Scholar 

  • 25.

    Zhou, Y., Wang, L., Chen, Y., Zhang, J. & Liu, Y. Litter stoichiometric traits have stronger impact on humification than environment conditions in an alpine treeline ecotone. Plant Soil 453, 545–560 (2020).

    CAS  Article  Google Scholar 

  • 26.

    Mooshammer, M. et al. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech litter. Ecology 93, 770–782 (2012).

    PubMed  Article  Google Scholar 

  • 27.

    Remy, E. et al. Driving factors behind litter decomposition and nutrient release at temperate forest edges. Ecosystems 24, 755–771 (2017).

    Google Scholar 

  • 28.

    Zhou, S. et al. Simulated nitrogen deposition significantly suppresses the decomposition of forest litter in a natural evergreen broad-leaved forest in the rainy area of western China. Plant Soil 420, 135–145 (2017).

    CAS  Article  Google Scholar 

  • 29.

    Cornwell, W. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).

    PubMed  Article  Google Scholar 

  • 30.

    Norris, M., Avis, P., Reich, P. & Hobbie, S. E. Positive feedbacks between decomposition and soil nitrogen availability along fertility gradients. Plant Soil 367, 347–361 (2013).

    CAS  Article  Google Scholar 

  • 31.

    Berg, B. & McClaugherty, C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration 2nd edn. (Springer, Berlin, 2008).

    Google Scholar 

  • 32.

    Cuchietti, A., Marcotti, E., Gurvich, D. E., Cingolani, A. M. & Harguindeguy, N. P. Leaf litter mixtures and neighbour effects: Low-nitrogen and high-lignin species increase decomposition rate of high-nitrogen and low-lignin neighbours. Appl. Soil Ecol. 82, 44–51 (2014).

    Article  Google Scholar 

  • 33.

    Jing, H. & Wang, G. Temporal dynamics of Pinus tabulaeformis litter decomposition under nitrogen addition on the loess plateau of China. For. Ecol. Manag. 476, 118465 (2020).

    Article  Google Scholar 

  • 34.

    Sun, T., Dong, L., Wang, Z., Lü, X. & Mao, Z. Effects of long-term nitrogen deposition on fine root decomposition and its extracellular enzyme activities in temperate forests. Soil Biol. Biochem. 93, 50–59 (2016).

    CAS  Article  Google Scholar 

  • 35.

    Carrera, A. L. & Bertiller, M. B. Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands. J. Environ. Manag. 114, 505–511 (2013).

    CAS  Article  Google Scholar 

  • 36.

    Sun, Z. et al. The effect of nitrogen addition on soil respiration from a nitrogen-limited forest soil. Agr. For. Meteorol. 197, 103–110 (2014).

    Article  Google Scholar 

  • 37.

    He, X., Lin, Y., Han, G. & Ma, T. Litterfall interception by understorey vegetation delayed litter decomposition in Cinnamomum camphora plantation forest. Plant Soil 372, 207–219 (2013).

    CAS  Article  Google Scholar 

  • 38.

    Wang, Q. et al. Impact of 36 years of nitrogen fertilization on microbial community composition and soil carbon cycling-related enzyme activities in rhizospheres and bulk soils in northeast China. Appl. Soil Ecol. 136, 148–157 (2019).

    Article  Google Scholar 

  • 39.

    Chen, J. et al. Co-stimulation of soil glycosidase activity and soil respiration by nitrogen addition. Global Change Biol. 23, 1328–1337 (2016).

    ADS  Article  Google Scholar 

  • 40.

    Wang, C. et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biol. Biochem. 121, 103–112 (2018).

    CAS  Article  Google Scholar 

  • 41.

    Jing, X. et al. Neutral effect of nitrogen addition and negative effect of phosphorus addition on topsoil extracellular enzymatic activities in an alpine grassland ecosystem. Appl. Soil Ecol. 107, 205–213 (2016).

    Article  Google Scholar 

  • 42.

    Jing, X. et al. Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests. Sci. Total Environ. 607–608, 806–815 (2017).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 43.

    Wang, Q., Kwak, J., Choi, W. & Chang, S. X. Decomposition of trembling aspen leaf litter under long-term nitrogen and sulfur deposition: effects of litter chemistry and forest floor microbial properties. For. Ecol. Manag. 412, 53–61 (2018).

    Article  Google Scholar 

  • 44.

    Huang, X. et al. Autotoxicity hinders the natural regeneration of Cinnamomum migao H W. Li in southwest China. Forests 10, 919 (2019).

    Article  Google Scholar 

  • 45.

    Feng, H., Xue, L. & Chen, H. Responses of decomposition of green leaves and leaf litter to stand density, N and P additions in Acacia auriculaeformis stands. Eur. J. For. Res. 137, 819–830 (2018).

    Article  Google Scholar 

  • 46.

    Diepen, L. V. et al. Changes in litter quality caused by simulated nitrogen deposition reinforce the N-induced suppression of litter decay. Ecosphere 6, t205 (2015).

    Article  Google Scholar 

  • 47.

    Zechmeister-Boltenstern, S. et al. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol. Monogr. 85, 133–155 (2015).

    Article  Google Scholar 

  • 48.

    Hobbie, S. E. Nitrogen effects on decomposition: A five-year experiment in eight temperate sites. Ecology 89, 2633–2644 (2008).

    PubMed  Article  Google Scholar 

  • 49.

    Hobbie, S. Interactions between litter lignin and nitrogenitter lignin and soil nitrogen availability during leaf litter decomposition in a hawaiian montane forest. Ecosystems 3, 484–494 (2000).

    CAS  Article  Google Scholar 

  • 50.

    Zhang, J. et al. Effect of nitrogen and phosphorus addition on litter decomposition and nutrients release in a tropical forest. Plant Soil 454, 139–153 (2020).

    CAS  Article  Google Scholar 

  • 51.

    Apolinário, V. et al. Litter decomposition of signalgrass grazed with different stocking rates and nitrogen fertilizer levels. Agron. J. 106, 1–6 (2014).

    Article  Google Scholar 

  • 52.

    Takeda, H. Decomposition Processes of Litter Along a Latitudinal Gradient (Springer, Dordrecht, 1998).

    Google Scholar 

  • 53.

    Torreta, N. K. & Takeda, H. Carbon and nitrogen dynamics of decomposing leaf litter in a tropical hill evergreen forest. Eur. J. Soil Biol. 35, 57–63 (1999).

    CAS  Article  Google Scholar 

  • 54.

    Song, Y., Song, C., Ren, J., Zhang, X. & Jiang, L. Nitrogen input increases Deyeuxia angustifolia litter decomposition and enzyme activities in a marshland ecosystem in Sanjiang plain, northeast China. Wetlands. 39, 549–557 (2019).

    Article  Google Scholar 

  • 55.

    Sinsabaugh, R. L., Hill, B. H. & Follstad Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795–798 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Xia, M. A. T. A. Long-term simulated atmospheric nitrogen deposition alters leaf and fine root decomposition. Ecosystems 21, 1–14 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Chen, F., Feng, X. & Liang, C. Endogenous versus exogenous nutrient affects C, N, and P dynamics in decomposing litters in mid-subtropical forests of China. Ecol. Res. 27, 923–932 (2012).

    CAS  Article  Google Scholar 

  • 58.

    Zhou, Z., Wang, C., Zheng, M., Jiang, L. & Luo, Y. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biol. Biochem. 115, 433–441 (2017).

    CAS  Article  Google Scholar 

  • 59.

    He, X. et al. Diversity and decomposition potential of endophytes in leaves of a Cinnamomum camphora plantation in China. Ecol. Res. 27, 273 (2011).

    ADS  Article  Google Scholar 

  • 60.

    Berg, B. R. & Laskowski, R. Litter Decomposition: A Guide to Carbon and Nutrient Turnover, Advances in Ecological Research Vol. 38 (Academic Press, Waltham, 2006).

    Google Scholar 

  • 61.

    Hall, S., Huang, W., Timokhin, V. & Hammel, K. Lignin lags, leads, or limits the decomposition of litter and soil organic carbon. Ecology 101, e03113 (2020).

    PubMed  Article  Google Scholar 

  • 62.

    Tu, L. et al. Nitrogen addition significantly affects forest litter decomposition under high levels of ambient nitrogen deposition. PLoS ONE 9, e88752 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 63.

    Zhou, X. & Zhang, Y. Temporal dynamics of soil oxidative enzyme activity across a simulated gradient of nitrogen deposition in the gurbantunggut desert, northwestern China. Geoderma 213, 261–267 (2014).

    ADS  CAS  Article  Google Scholar 

  • 64.

    Hao, C. et al. Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old-growth tropical forest. PLoS ONE 8, e84101 (2013).

    ADS  Article  Google Scholar 

  • 65.

    Cameron, K. C., Di, H. J. & Moir, J. Nitrogen losses from the soil/plant system: a review. Ann. Appl. Biol. 162, 145–173 (2013).

    CAS  Article  Google Scholar 

  • 66.

    Waldrop, M. P., Zak, D. R., Sinsabaugh, R. L., Gallo, M. & Lauber, C. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol. Appl. 14, 1172–1177 (2004).

    Article  Google Scholar 

  • 67.

    Freedman, Z. B., Upchurch, R. A., Zak, D. R. & Cline, L. C. Anthropogenic N deposition slows decay by favoring bacterial metabolism: Insights from metagenomic analyses. Front. Microbiol. 7, 259 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol. 193, 696–704 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 69.

    Weand, M. P., Arthur, M. A., Lovett, G. M., McCulley, R. L. & Weathers, K. C. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil Biol. Biochem. 42, 2161–2173 (2010).

    CAS  Article  Google Scholar 

  • 70.

    Wang, C. et al. Response of litter decomposition and related soil enzyme activities to different forms of nitrogen fertilization in a subtropical forest. Ecol. Res. 26, 505–513 (2011).

    CAS  Article  Google Scholar 

  • 71.

    Feng, H., Xue, L. & Chen, H. Responses of decomposition of green leaves and leaf litter to stand density, N and P additions in Acacia auriculaeformis stands. Eur. J. Forest Res. 137, 819 (2018).

    Article  Google Scholar 

  • 72.

    Frey, S. D., Knorr, M., Parrent, J. L. & Simpson, R. T. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For. Ecol. Manag. 196, 159–171 (2004).

    Article  Google Scholar 

  • 73.

    Zheng, Z. et al. Effects of nutrient additions on litter decomposition regulated by phosphorus-induced changes in litter chemistry in a subtropical forest, China. For. Ecol. Manag. 400, 123–128 (2017).

    Article  Google Scholar 

  • 74.

    Mo, J. et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob. Change Biol. 14, 403–412 (2008).

    ADS  Article  Google Scholar 

  • 75.

    Liu, G., Jiang, N. & Zhang, L. D. Soil Physical and Chemical Analysis and Description of Soil Profiles (Standards Press of China, Beijing, 1996).

    Google Scholar 

  • 76.

    Bao, S. D. Soil and Agricultural Chemistry Analysis 3rd edn. (China Agricultural Press, Beijing, 2013).

    Google Scholar 

  • 77.

    Allen, S. E. Chemical analysis of Ecological Materials, 2nd edn, Vol. 13 (Blackwell Scientific Publications, Oxford, 1989).

    Google Scholar 

  • 78.

    Rowland, A. P. & Roberts, J. D. Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods. Commun. Soil Sci. Plan. 25, 269–277 (1994).

    CAS  Article  Google Scholar 

  • 79.

    Olson, J. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331 (1963).

    Article  Google Scholar 

  • 80.

    Bockheim, J., Jepsen, E. A. & Heisey, D. M. Nutrient dynamics in decomposing leaf litter of four tree species on a sandy soil in northwestern Wisconsin. Can. J. For. Res. 21, 803–812 (1991).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    The sources of variation for individual prey-to-predator size ratios

    Alteration of coastal productivity and artisanal fisheries interact to affect a marine food web