Berkes, F. & Folke, C. Linking social and ecological systems for resilience and sustainability. in Linking social and ecological systems: management practices and social mechanisms for building resilience (eds. Berkes, F. & Folke, C.) 1–25 (Cambridge University Press, 2002).
Pretty, J. et al. The intersections of biological diversity and cultural diversity: Towards integration. Conserv. Soc. 7, 100 (2009).
Google Scholar
IPBES. The regional assessment report on biodiversity and ecosystem services for the Americas (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2018).
Galluzzi, G., Eyzaguirre, P. & Negri, V. Home gardens: Neglected hotspots of agro-biodiversity and cultural diversity. Biodivers. Conserv. 19, 3635–3654 (2010).
Google Scholar
Fernandes, E. C. M. & Nair, P. K. R. An evaluation of the structure and function of tropical homegardens. Agric. Syst. 21, 279–310 (1986).
Google Scholar
Ibarra, J. T., Caviedes, J., Barreau, A. & Pessa, N. Huertas familiares y comunitarias: cultivando soberanía alimentaria (Ediciones Universidad Católica de Chile, 2019).
Eyzaguirre, P. B. & Linares, O. F. Home Gardens and Agrobiodiversity (Smithsonian Institution Press, 2010).
Timsuksai, P. & Rambo, A. T. The influence of culture on agroecosystem structure: a comparison of the spatial patterns of homegardens of different ethnic groups in Thailand and Vietnam. PLoS ONE 11, e0146118 (2016).
Google Scholar
Lemessa, D., Hambäck, P. A. & Hylander, K. The effect of local and landscape level land-use composition on predatory arthropods in a tropical agricultural landscape. Landsc. Ecol. 30, 167–180 (2015).
Google Scholar
Mattsson, E., Ostwald, M., Nissanka, S. P. & Pushpakumara, D. K. N. G. Quantification of carbon stock and tree diversity of homegardens in a dry zone area of Moneragala district, Sri Lanka. Agrofor. Syst. 89, 435–445 (2015).
Google Scholar
Mohri, H. et al. Assessment of ecosystem services in homegarden systems in Indonesia, Sri Lanka, and Vietnam. Ecosyst. Serv. 5, 124–136 (2013).
Google Scholar
Pakeman, R. J. & Stockan, J. A. Drivers of carabid functional diversity: abiotic environment, plant functional traits, or plant functional diversity?. Ecology 95, 1213–1224 (2014).
Google Scholar
Altieri, M. A. Agroecology: The Science of Sustainable Agriculture (Westview Press, 1995).
Ellis, E. C. & Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).
Google Scholar
Piccini, I. et al. Dung beetles as drivers of ecosystem multifunctionality: Are response and effect traits interwoven?. Sci. Total Environ. 616–617, 1440–1448 (2018).
Google Scholar
Boonstra, W. J., Björkvik, E., Haider, L. J. & Masterson, V. Human responses to social-ecological traps. Sustain. Sci. 11, 877–889 (2016).
Google Scholar
Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).
Google Scholar
Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
Google Scholar
Toledo-Hernández, M., Denmead, L. H., Clough, Y., Raffiudin, R. & Tscharntke, T. Cultural homegarden management practices mediate arthropod communities in Indonesia. J. Insect Conserv. 20, 373–382 (2016).
Google Scholar
Jaganmohan, M., Vailshery, L. S. & Nagendra, H. Patterns of insect abundance and distribution in urban domestic gardens in Bangalore, India. Diversity 5, 767–778 (2013).
Google Scholar
Huerta, E. & Van der Wal, H. Soil macroinvertebrates’ abundance and diversity in home gardens in Tabasco, Mexico, vary with soil texture, organic matter and vegetation cover. Eur. J. Soil Biol. 50, 68–75 (2012).
Google Scholar
Pizzolotto, R. et al. Ground beetles in Mediterranean olive agroecosystems: their significance and functional role as bioindicators (Coleoptera, Carabidae). PLoS ONE 13, e0194551 (2018).
Google Scholar
Grez, A. A., Zaviezo, T., Casanoves, F., Oberti, R. & Pliscoff, P. The positive association between natural vegetation, native coccinellids and functional diversity of aphidophagous coccinellid communities in alfalfa. Insect Conserv. Divers. https://doi.org/10.1111/icad.12473 (2021).
Google Scholar
Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).
Google Scholar
Guerrero, I., Carmona, C. P., Morales, M. B., Oñate, J. J. & Peco, B. Non-linear responses of functional diversity and redundancy to agricultural intensification at the field scale in Mediterranean arable plant communities. Agric. Ecosyst. Environ. 195, 36–43 (2014).
Google Scholar
Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).
Upreti, B. R. & Upreti, Y. G. Factors leading to agro-biodiversity loss in developing countries: the case of Nepal. Biodivers. Conserv. 11, 1607–1621 (2002).
Google Scholar
Reyes-García, V. et al. Resilience of traditional knowledge systems: The case of agricultural knowledge in home gardens of the Iberian Peninsula. Glob. Environ. Chang. 24, 223–231 (2014).
Google Scholar
Kawa, N. C. How religion, race, and the weedy agency of plants shape Amazonian home gardens. Cult. Agric. Food Environ. 38, 84–93 (2016).
Google Scholar
Brondizio, E. S. et al. Re-conceptualizing the Anthropocene: A call for collaboration. Glob. Environ. Chang. 39, 318–327 (2016).
Google Scholar
Benson, M. & O’Reilly, K. Lifestyle Migration: Expectations, Aspirations, and Experiences (Ashgate Publishing, 2009).
Marchant, C. Lifestyle migration and the nascent agroecological movement in the Andean Araucanía, Chile: Is it promoting sustainable local development?. Mt. Res. Dev. 37, 406–414 (2017).
Google Scholar
Ibarra, J. T., Barreau, A., Caviedes, J., Pessa, N. & Urra, R. Huertas familiares tradicionales y emergentes: cultivando biodiversidad, aprendizaje y soberanía desde la interculturalidad. in Huertas familiares y comunitarias: cultivando soberanía alimentaria (eds. Ibarra, J. T., Caviedes, J., Barreau, A. & Pessa, N.) 138–165 (Ediciones Universidad Católica de Chile, 2019).
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
Google Scholar
Arroyo, M. T. K. et al. El hotspot chileno, prioridad mundial para la conservación. in Diversidad de Chile: patrimonios y desafíos (ed. Mnisterio del Medio Ambiente, G. de C.) 90–95 (Ocho Libros Editores, 2006).
Farias, A. A. & Jaksic, F. M. Low functional richness and redundancy of a predator assemblage in native forest fragments of Chiloe Island Chile. J. Anim. Ecol. 80, 809–817 (2011).
Google Scholar
Ibarra, J. T. & Martin, K. Biotic homogenization: loss of avian functional richness and habitat specialists in disturbed Andean temperate forests. Biol. Conserv. 192, 418–427 (2015).
Google Scholar
Lavelle, P. et al. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33, 159–193 (1997).
Google Scholar
Cole, L. J. et al. Relationships between agricultural management and ecological groups of ground beetles (Coleoptera: Carabidae) on Scottish farmland. Agric. Ecosyst. Environ. 93, 323–336 (2002).
Google Scholar
Van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).
Google Scholar
Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).
Google Scholar
Lencinas, M. V., Sola, F. J., Cellini, J. M., Peri, P. L. & Martínez Pastur, G. Land sharing in South Patagonia: Conservation of above-ground beetle diversity in forests and non-forest ecosystems. Sci. Total Environ. 690, 132–139 (2019).
Roig-Juñent, S. & Domínguez, M. C. Diversidad de la familia Carabidae (Coleoptera) en Chile. Rev. Chil. Hist. Nat. 74, 549–571 (2001).
Google Scholar
Grez, A. A., Moreno, P. & Elgueta, M. Coleópteros (Insecta: Coleoptera) epígeos asociados al bosque maulino y plantaciones de pino aledañas. Rev. Chil. Entomol. 29, 9–18 (2003).
Richardson, B. J. & Arias-Bohart, E. T. Why so many apparently rare beetles in Chilean temperate rainforests?. Rev. Chil. Hist. Nat. 84, 419–432 (2011).
Google Scholar
Cifuentes-Croquevielle, C., Stanton, D. E. & Armesto, J. J. Soil invertebrate diversity loss and functional changes in temperate forest soils replaced by exotic pine plantations. Sci. Rep. 10, 7762 (2020).
Google Scholar
Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).
Google Scholar
Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2013).
Google Scholar
Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).
Google Scholar
Mori, A. S. Resilience in the studies of biodiversity-ecosystem functioning. Trends Ecol. Evol. 31, 87–89 (2016).
Google Scholar
Ibarra, J. T. et al. Nurturing resilient forest biodiversity: nest webs as complex adaptive systems. Ecol. Soc. 25, 27 (2020).
Google Scholar
Ibarra, J. T., Martin, M., Cockle, K. L. & Martin, K. Maintaining ecosystem resilience: functional responses of tree cavity nesters to logging in temperate forests of the Americas. Sci. Rep. 7, 4467 (2017).
Google Scholar
Elgueta, M. & Arriagada, G. Estado actual del conocimiento de los coleópteros de Chile (Insecta: Coleoptera). Rev. Chil. Entomol. 17, 5–60 (1989).
Díaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).
Google Scholar
Petchey, O. L., Evans, K. L., Fishburn, I. S. & Gaston, K. J. Low functional diversity and no redundancy in British avian assemblages. J. Anim. Ecol. 76, 977–985 (2007).
Google Scholar
Villagrán, C. & Hinojosa, L. F. Historia de los bosques del sur de Sudamérica, II : análisis fitogeográfico. Rev. Chil. Hist. Nat. 70, 241–267 (1997).
Vuilleumier, F. & Simpson, B. Pleistocene changes in the fauna and flora of South America. Science 173, 771–780 (1971).
Google Scholar
Niemelä, J. Habitat distribution of carabid beetles in Tierra del Fuego South America. Entomol. Fenn. 29, 3–16 (1990).
Google Scholar
O’Brien, C. The biogeography of Chile through entomofaunal regions. Entomol. News 82, 197–202 (1971).
Vergara, O. E., Jerez, V. & Parra, L. E. Diversidad y patrones de distribución de coleópteros en la Región del Biobío, Chile : una aproximación preliminar para la conservación de la diversidad. Rev. Chil. Hist. Nat. 79, 369–388 (2006).
Google Scholar
Mason, N. W. H., Irz, P., Lanoiselée, C., Mouillot, D. & Argillier, C. Evidence that niche specialization explains species-energy relationships in lake fish communities. J. Anim. Ecol. 77, 285–296 (2008).
Google Scholar
Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization?. Front. Ecol. Environ. 9, 222–228 (2011).
Google Scholar
Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).
Google Scholar
Trinh, L. N. et al. Agrobiodiversity conservation and development in Vietnamese home gardens. Agric. Ecosyst. Environ. 97, 317–344 (2003).
Google Scholar
MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 1967).
Serge, M. M. P., Giovani, E. T. & Mony, R. Household and home garden infesting arthropods (Ants and Myriapods) in the city of Yaoundé, Cameroon. J. Entomol. Zool. Stud. 7, 1030–1037 (2019).
Jacquet, C., Mouillot, D., Kulbicki, M. & Gravel, D. Extensions of island biogeography theory predict the scaling of functional trait composition with habitat area and isolation. Ecol. Lett. 20, 135–146 (2017).
Google Scholar
Gravel, D., Massol, F., Canard, E., Mouillot, D. & Mouquet, N. Trophic theory of island biogeography. Ecol. Lett. 14, 1010–1016 (2011).
Google Scholar
Regman, T. P. et al. Species interactions regulate the collapse of biodiversity and ecosystem function in tropical forest fragments. Ecology 96, 2692–2704 (2015).
Google Scholar
Bolger, D. T., Suarez, A. V., Crooks, K. R., Morrison, S. A. & Case, T. J. Arthropods in urban habitat fragments in southern California: area, age and edge effects. Ecol. Appl. 10, 1230–1248 (2000).
Google Scholar
Barreau, A., Ibarra, J. T., Wyndham, F. S. & Kozak, R. A. Shifts in Mapuche food systems in southern Andean forest landscapes: historical processes and current trends of biocultural homogenization. Mt. Res. Dev. 39, 12–23 (2019).
Google Scholar
Caviedes, J. & Ibarra, J. T. Influence of anthropogenic disturbances on stand structural complexity in Andean temperate forests: implications for managing key habitat for biodiversity. PLoS ONE 12, e0169450 (2017).
Google Scholar
Altieri, M. A. & Nicholls, C. I. The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Change 140, 33–45 (2017).
Google Scholar
Sánchez-Bayo, F. Impacts of agricultural pesticides on terrestrial ecosystems. in Ecological Impacts of Toxic Chemicals (eds. Sánchez-Bayo, F., Van den Brink, P. J. & Mann, R.) 63–87 (Bentham Science Publishers, 2011).
Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).
Google Scholar
Barreau, A., Ibarra, J. T., Wyndham, F. S., Rojas, A. & Kozak, R. A. How can we teach our children if we cannot access the forest? Generational change in Mapuche knowledge of wild edible plants in Andean temperate ecosystems of Chile. J. Ethnobiol. 36, 412–432 (2016).
Google Scholar
Newing, H. Conducting research in conservation: a social science perspective. (Routledge, 2011). https://doi.org/10.1007/s13398-014-0173-7.2
Caballero-Serrano, V. et al. Plant diversity and ecosystem services in Amazonian homegardens of Ecuador. Agric. Ecosyst. Environ. 225, 116–125 (2016).
Google Scholar
Schneider, J. Toward an analysis of home-garden cultures: on the use of socio-cultural variables in home garden studies. in Home gardens and agrobiodiversity (eds. Eyzaguirre, P. B. & Linares, O. F.) 41–55 (Smithsonian Books, 2010).
Rohr, J. R., Mahan, C. G. & Kim, K. C. Developing a monitoring program for invertebrates: guidelines and a case study. Conserv. Biol. 21, 422–433 (2007).
Google Scholar
Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).
Google Scholar
Iida, T., Soga, M., Hiura, T. & Koike, S. Life history traits predict insect species responses to large herbivore overabundance: a multitaxonomic approach. J. Insect Conserv. 20, 295–304 (2016).
Google Scholar
Vanderwel, M. C., Malcolm, J. R., Smith, S. M. & Islam, N. Insect community composition and trophic guild structure in decaying logs from eastern Canadian pine-dominated forests. For. Ecol. Manage. 225, 190–199 (2006).
Google Scholar
Zarazaga, M. A. Clase Insecta Orden Coleoptera. Rev. IDE-SEA 56, 1–18 (2015).
Lazo, W. Insectos de Chile: atlas entomológico. (Universidad de Chile, 2015).
Briones, R., Gárate-Flores, F. & Jerez, V. Insectos de Chile. Nativos, introducidos y con problemas de conservacion. (Corporación Chilena de la Madera, 2012).
Elgueta, M. & Arriagada, G. Estado actual del conocimiento de los coleópteros de Chile (Insecta: Coleoptera). Rev. Chil. Entomol. 17, 05–60 (1989).
Elgueta, M. & Marvaldi, A. E. Lista sistemática de las especies de curculionoidea (insecta: coleoptera) presentes en Chile, con su sinonimia. Boletín del Mus. Nac. Hist. Nat. 55, 113–153 (2006).
Moore, T. & Vidal, P. Los Bupréstidos de Chile. (Ediciones UC, 2013).
Roig-Juñent, S. & Domínguez, M. C. Diversity of the family Carabidae (Coleoptera) in Chile. Rev. Chil. Hist. Nat. 74, 549–571 (2001).
Google Scholar
Arriagada, G. Histéridos chilenos (Coleoptera: Histeridae). Rev. Chil. Entomol. 14, 71–80 (1986).
González, G. Lista y distribución geográfica de especies de Coccinelidae (Insecta: Coleoptera) presentes en Chile. Boletín del Mus. Nac. Hist. Nat. 57, 77–107 (2008).
Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. 115, E10397–E10406 (2018).
Google Scholar
Johnson, M. D. & Strong, A. M. Length-weight relationships of Jamaican arthropods. Entomol. News 111, 270–281 (2000).
Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. (2011).
Zuur, A., Leno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. Statistics for Biology and Health 36, (Springer, 2009).
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1:48 (2015).
Mazerolle, M. J. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R Packag. version 2.1–1 (2017).
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2021).
Burnham, K. P. & Anderson, D. R. Model selection and inference: a practical information-theoretic approach. (Springer-Verlag, 2002).
Oliver, M. A. & Webster, R. Kriging: a method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 4, 313–332 (1990).
Google Scholar
Source: Ecology - nature.com