in

Social-ecological filters drive the functional diversity of beetles in homegardens of campesinos and migrants in the southern Andes

  • 1.

    Berkes, F. & Folke, C. Linking social and ecological systems for resilience and sustainability. in Linking social and ecological systems: management practices and social mechanisms for building resilience (eds. Berkes, F. & Folke, C.) 1–25 (Cambridge University Press, 2002).

  • 2.

    Pretty, J. et al. The intersections of biological diversity and cultural diversity: Towards integration. Conserv. Soc. 7, 100 (2009).

    Article 

    Google Scholar 

  • 3.

    IPBES. The regional assessment report on biodiversity and ecosystem services for the Americas (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2018).

  • 4.

    Galluzzi, G., Eyzaguirre, P. & Negri, V. Home gardens: Neglected hotspots of agro-biodiversity and cultural diversity. Biodivers. Conserv. 19, 3635–3654 (2010).

    Article 

    Google Scholar 

  • 5.

    Fernandes, E. C. M. & Nair, P. K. R. An evaluation of the structure and function of tropical homegardens. Agric. Syst. 21, 279–310 (1986).

    Article 

    Google Scholar 

  • 6.

    Ibarra, J. T., Caviedes, J., Barreau, A. & Pessa, N. Huertas familiares y comunitarias: cultivando soberanía alimentaria (Ediciones Universidad Católica de Chile, 2019).

  • 7.

    Eyzaguirre, P. B. & Linares, O. F. Home Gardens and Agrobiodiversity (Smithsonian Institution Press, 2010).

  • 8.

    Timsuksai, P. & Rambo, A. T. The influence of culture on agroecosystem structure: a comparison of the spatial patterns of homegardens of different ethnic groups in Thailand and Vietnam. PLoS ONE 11, e0146118 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 9.

    Lemessa, D., Hambäck, P. A. & Hylander, K. The effect of local and landscape level land-use composition on predatory arthropods in a tropical agricultural landscape. Landsc. Ecol. 30, 167–180 (2015).

    Article 

    Google Scholar 

  • 10.

    Mattsson, E., Ostwald, M., Nissanka, S. P. & Pushpakumara, D. K. N. G. Quantification of carbon stock and tree diversity of homegardens in a dry zone area of Moneragala district, Sri Lanka. Agrofor. Syst. 89, 435–445 (2015).

    Article 

    Google Scholar 

  • 11.

    Mohri, H. et al. Assessment of ecosystem services in homegarden systems in Indonesia, Sri Lanka, and Vietnam. Ecosyst. Serv. 5, 124–136 (2013).

    Article 

    Google Scholar 

  • 12.

    Pakeman, R. J. & Stockan, J. A. Drivers of carabid functional diversity: abiotic environment, plant functional traits, or plant functional diversity?. Ecology 95, 1213–1224 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Altieri, M. A. Agroecology: The Science of Sustainable Agriculture (Westview Press, 1995).

  • 14.

    Ellis, E. C. & Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).

    Article 

    Google Scholar 

  • 15.

    Piccini, I. et al. Dung beetles as drivers of ecosystem multifunctionality: Are response and effect traits interwoven?. Sci. Total Environ. 616–617, 1440–1448 (2018).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 16.

    Boonstra, W. J., Björkvik, E., Haider, L. J. & Masterson, V. Human responses to social-ecological traps. Sustain. Sci. 11, 877–889 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).

    Article 

    Google Scholar 

  • 18.

    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).

    Article 

    Google Scholar 

  • 19.

    Toledo-Hernández, M., Denmead, L. H., Clough, Y., Raffiudin, R. & Tscharntke, T. Cultural homegarden management practices mediate arthropod communities in Indonesia. J. Insect Conserv. 20, 373–382 (2016).

    Article 

    Google Scholar 

  • 20.

    Jaganmohan, M., Vailshery, L. S. & Nagendra, H. Patterns of insect abundance and distribution in urban domestic gardens in Bangalore, India. Diversity 5, 767–778 (2013).

    Article 

    Google Scholar 

  • 21.

    Huerta, E. & Van der Wal, H. Soil macroinvertebrates’ abundance and diversity in home gardens in Tabasco, Mexico, vary with soil texture, organic matter and vegetation cover. Eur. J. Soil Biol. 50, 68–75 (2012).

    Article 

    Google Scholar 

  • 22.

    Pizzolotto, R. et al. Ground beetles in Mediterranean olive agroecosystems: their significance and functional role as bioindicators (Coleoptera, Carabidae). PLoS ONE 13, e0194551 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 23.

    Grez, A. A., Zaviezo, T., Casanoves, F., Oberti, R. & Pliscoff, P. The positive association between natural vegetation, native coccinellids and functional diversity of aphidophagous coccinellid communities in alfalfa. Insect Conserv. Divers. https://doi.org/10.1111/icad.12473 (2021).

    Article 

    Google Scholar 

  • 24.

    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Guerrero, I., Carmona, C. P., Morales, M. B., Oñate, J. J. & Peco, B. Non-linear responses of functional diversity and redundancy to agricultural intensification at the field scale in Mediterranean arable plant communities. Agric. Ecosyst. Environ. 195, 36–43 (2014).

    Article 

    Google Scholar 

  • 26.

    Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).

    Google Scholar 

  • 27.

    Upreti, B. R. & Upreti, Y. G. Factors leading to agro-biodiversity loss in developing countries: the case of Nepal. Biodivers. Conserv. 11, 1607–1621 (2002).

    Article 

    Google Scholar 

  • 28.

    Reyes-García, V. et al. Resilience of traditional knowledge systems: The case of agricultural knowledge in home gardens of the Iberian Peninsula. Glob. Environ. Chang. 24, 223–231 (2014).

    Article 

    Google Scholar 

  • 29.

    Kawa, N. C. How religion, race, and the weedy agency of plants shape Amazonian home gardens. Cult. Agric. Food Environ. 38, 84–93 (2016).

    Article 

    Google Scholar 

  • 30.

    Brondizio, E. S. et al. Re-conceptualizing the Anthropocene: A call for collaboration. Glob. Environ. Chang. 39, 318–327 (2016).

    Article 

    Google Scholar 

  • 31.

    Benson, M. & O’Reilly, K. Lifestyle Migration: Expectations, Aspirations, and Experiences (Ashgate Publishing, 2009).

  • 32.

    Marchant, C. Lifestyle migration and the nascent agroecological movement in the Andean Araucanía, Chile: Is it promoting sustainable local development?. Mt. Res. Dev. 37, 406–414 (2017).

    Article 

    Google Scholar 

  • 33.

    Ibarra, J. T., Barreau, A., Caviedes, J., Pessa, N. & Urra, R. Huertas familiares tradicionales y emergentes: cultivando biodiversidad, aprendizaje y soberanía desde la interculturalidad. in Huertas familiares y comunitarias: cultivando soberanía alimentaria (eds. Ibarra, J. T., Caviedes, J., Barreau, A. & Pessa, N.) 138–165 (Ediciones Universidad Católica de Chile, 2019).

  • 34.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Arroyo, M. T. K. et al. El hotspot chileno, prioridad mundial para la conservación. in Diversidad de Chile: patrimonios y desafíos (ed. Mnisterio del Medio Ambiente, G. de C.) 90–95 (Ocho Libros Editores, 2006).

  • 36.

    Farias, A. A. & Jaksic, F. M. Low functional richness and redundancy of a predator assemblage in native forest fragments of Chiloe Island Chile. J. Anim. Ecol. 80, 809–817 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 37.

    Ibarra, J. T. & Martin, K. Biotic homogenization: loss of avian functional richness and habitat specialists in disturbed Andean temperate forests. Biol. Conserv. 192, 418–427 (2015).

    Article 

    Google Scholar 

  • 38.

    Lavelle, P. et al. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33, 159–193 (1997).

    CAS 

    Google Scholar 

  • 39.

    Cole, L. J. et al. Relationships between agricultural management and ecological groups of ground beetles (Coleoptera: Carabidae) on Scottish farmland. Agric. Ecosyst. Environ. 93, 323–336 (2002).

    Article 

    Google Scholar 

  • 40.

    Van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 41.

    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Article 

    Google Scholar 

  • 42.

    Lencinas, M. V., Sola, F. J., Cellini, J. M., Peri, P. L. & Martínez Pastur, G. Land sharing in South Patagonia: Conservation of above-ground beetle diversity in forests and non-forest ecosystems. Sci. Total Environ. 690, 132–139 (2019).

  • 43.

    Roig-Juñent, S. & Domínguez, M. C. Diversidad de la familia Carabidae (Coleoptera) en Chile. Rev. Chil. Hist. Nat. 74, 549–571 (2001).

    Article 

    Google Scholar 

  • 44.

    Grez, A. A., Moreno, P. & Elgueta, M. Coleópteros (Insecta: Coleoptera) epígeos asociados al bosque maulino y plantaciones de pino aledañas. Rev. Chil. Entomol. 29, 9–18 (2003).

    Google Scholar 

  • 45.

    Richardson, B. J. & Arias-Bohart, E. T. Why so many apparently rare beetles in Chilean temperate rainforests?. Rev. Chil. Hist. Nat. 84, 419–432 (2011).

    Article 

    Google Scholar 

  • 46.

    Cifuentes-Croquevielle, C., Stanton, D. E. & Armesto, J. J. Soil invertebrate diversity loss and functional changes in temperate forest soils replaced by exotic pine plantations. Sci. Rep. 10, 7762 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).

    Article 

    Google Scholar 

  • 48.

    Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2013).

    Article 

    Google Scholar 

  • 49.

    Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).

    Article 

    Google Scholar 

  • 50.

    Mori, A. S. Resilience in the studies of biodiversity-ecosystem functioning. Trends Ecol. Evol. 31, 87–89 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Ibarra, J. T. et al. Nurturing resilient forest biodiversity: nest webs as complex adaptive systems. Ecol. Soc. 25, 27 (2020).

    Article 

    Google Scholar 

  • 52.

    Ibarra, J. T., Martin, M., Cockle, K. L. & Martin, K. Maintaining ecosystem resilience: functional responses of tree cavity nesters to logging in temperate forests of the Americas. Sci. Rep. 7, 4467 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Elgueta, M. & Arriagada, G. Estado actual del conocimiento de los coleópteros de Chile (Insecta: Coleoptera). Rev. Chil. Entomol. 17, 5–60 (1989).

    Google Scholar 

  • 54.

    Díaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).

    Article 

    Google Scholar 

  • 55.

    Petchey, O. L., Evans, K. L., Fishburn, I. S. & Gaston, K. J. Low functional diversity and no redundancy in British avian assemblages. J. Anim. Ecol. 76, 977–985 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Villagrán, C. & Hinojosa, L. F. Historia de los bosques del sur de Sudamérica, II : análisis fitogeográfico. Rev. Chil. Hist. Nat. 70, 241–267 (1997).

    Google Scholar 

  • 57.

    Vuilleumier, F. & Simpson, B. Pleistocene changes in the fauna and flora of South America. Science 173, 771–780 (1971).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Niemelä, J. Habitat distribution of carabid beetles in Tierra del Fuego South America. Entomol. Fenn. 29, 3–16 (1990).

    Article 

    Google Scholar 

  • 59.

    O’Brien, C. The biogeography of Chile through entomofaunal regions. Entomol. News 82, 197–202 (1971).

    Google Scholar 

  • 60.

    Vergara, O. E., Jerez, V. & Parra, L. E. Diversidad y patrones de distribución de coleópteros en la Región del Biobío, Chile : una aproximación preliminar para la conservación de la diversidad. Rev. Chil. Hist. Nat. 79, 369–388 (2006).

    Article 

    Google Scholar 

  • 61.

    Mason, N. W. H., Irz, P., Lanoiselée, C., Mouillot, D. & Argillier, C. Evidence that niche specialization explains species-energy relationships in lake fish communities. J. Anim. Ecol. 77, 285–296 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization?. Front. Ecol. Environ. 9, 222–228 (2011).

    Article 

    Google Scholar 

  • 63.

    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Trinh, L. N. et al. Agrobiodiversity conservation and development in Vietnamese home gardens. Agric. Ecosyst. Environ. 97, 317–344 (2003).

    Article 

    Google Scholar 

  • 65.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 1967).

  • 66.

    Serge, M. M. P., Giovani, E. T. & Mony, R. Household and home garden infesting arthropods (Ants and Myriapods) in the city of Yaoundé, Cameroon. J. Entomol. Zool. Stud. 7, 1030–1037 (2019).

    Google Scholar 

  • 67.

    Jacquet, C., Mouillot, D., Kulbicki, M. & Gravel, D. Extensions of island biogeography theory predict the scaling of functional trait composition with habitat area and isolation. Ecol. Lett. 20, 135–146 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Gravel, D., Massol, F., Canard, E., Mouillot, D. & Mouquet, N. Trophic theory of island biogeography. Ecol. Lett. 14, 1010–1016 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Regman, T. P. et al. Species interactions regulate the collapse of biodiversity and ecosystem function in tropical forest fragments. Ecology 96, 2692–2704 (2015).

    Article 

    Google Scholar 

  • 70.

    Bolger, D. T., Suarez, A. V., Crooks, K. R., Morrison, S. A. & Case, T. J. Arthropods in urban habitat fragments in southern California: area, age and edge effects. Ecol. Appl. 10, 1230–1248 (2000).

    Article 

    Google Scholar 

  • 71.

    Barreau, A., Ibarra, J. T., Wyndham, F. S. & Kozak, R. A. Shifts in Mapuche food systems in southern Andean forest landscapes: historical processes and current trends of biocultural homogenization. Mt. Res. Dev. 39, 12–23 (2019).

    Article 

    Google Scholar 

  • 72.

    Caviedes, J. & Ibarra, J. T. Influence of anthropogenic disturbances on stand structural complexity in Andean temperate forests: implications for managing key habitat for biodiversity. PLoS ONE 12, e0169450 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 73.

    Altieri, M. A. & Nicholls, C. I. The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Change 140, 33–45 (2017).

    ADS 
    Article 

    Google Scholar 

  • 74.

    Sánchez-Bayo, F. Impacts of agricultural pesticides on terrestrial ecosystems. in Ecological Impacts of Toxic Chemicals (eds. Sánchez-Bayo, F., Van den Brink, P. J. & Mann, R.) 63–87 (Bentham Science Publishers, 2011).

  • 75.

    Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Barreau, A., Ibarra, J. T., Wyndham, F. S., Rojas, A. & Kozak, R. A. How can we teach our children if we cannot access the forest? Generational change in Mapuche knowledge of wild edible plants in Andean temperate ecosystems of Chile. J. Ethnobiol. 36, 412–432 (2016).

    Article 

    Google Scholar 

  • 77.

    Newing, H. Conducting research in conservation: a social science perspective. (Routledge, 2011). https://doi.org/10.1007/s13398-014-0173-7.2

  • 78.

    Caballero-Serrano, V. et al. Plant diversity and ecosystem services in Amazonian homegardens of Ecuador. Agric. Ecosyst. Environ. 225, 116–125 (2016).

    Article 

    Google Scholar 

  • 79.

    Schneider, J. Toward an analysis of home-garden cultures: on the use of socio-cultural variables in home garden studies. in Home gardens and agrobiodiversity (eds. Eyzaguirre, P. B. & Linares, O. F.) 41–55 (Smithsonian Books, 2010).

  • 80.

    Rohr, J. R., Mahan, C. G. & Kim, K. C. Developing a monitoring program for invertebrates: guidelines and a case study. Conserv. Biol. 21, 422–433 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 81.

    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).

    Article 

    Google Scholar 

  • 82.

    Iida, T., Soga, M., Hiura, T. & Koike, S. Life history traits predict insect species responses to large herbivore overabundance: a multitaxonomic approach. J. Insect Conserv. 20, 295–304 (2016).

    Article 

    Google Scholar 

  • 83.

    Vanderwel, M. C., Malcolm, J. R., Smith, S. M. & Islam, N. Insect community composition and trophic guild structure in decaying logs from eastern Canadian pine-dominated forests. For. Ecol. Manage. 225, 190–199 (2006).

    Article 

    Google Scholar 

  • 84.

    Zarazaga, M. A. Clase Insecta Orden Coleoptera. Rev. IDE-SEA 56, 1–18 (2015).

    Google Scholar 

  • 85.

    Lazo, W. Insectos de Chile: atlas entomológico. (Universidad de Chile, 2015).

  • 86.

    Briones, R., Gárate-Flores, F. & Jerez, V. Insectos de Chile. Nativos, introducidos y con problemas de conservacion. (Corporación Chilena de la Madera, 2012).

  • 87.

    Elgueta, M. & Arriagada, G. Estado actual del conocimiento de los coleópteros de Chile (Insecta: Coleoptera). Rev. Chil. Entomol. 17, 05–60 (1989).

    Google Scholar 

  • 88.

    Elgueta, M. & Marvaldi, A. E. Lista sistemática de las especies de curculionoidea (insecta: coleoptera) presentes en Chile, con su sinonimia. Boletín del Mus. Nac. Hist. Nat. 55, 113–153 (2006).

    Google Scholar 

  • 89.

    Moore, T. & Vidal, P. Los Bupréstidos de Chile. (Ediciones UC, 2013).

  • 90.

    Roig-Juñent, S. & Domínguez, M. C. Diversity of the family Carabidae (Coleoptera) in Chile. Rev. Chil. Hist. Nat. 74, 549–571 (2001).

    Article 

    Google Scholar 

  • 91.

    Arriagada, G. Histéridos chilenos (Coleoptera: Histeridae). Rev. Chil. Entomol. 14, 71–80 (1986).

    Google Scholar 

  • 92.

    González, G. Lista y distribución geográfica de especies de Coccinelidae (Insecta: Coleoptera) presentes en Chile. Boletín del Mus. Nac. Hist. Nat. 57, 77–107 (2008).

    Google Scholar 

  • 93.

    Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. 115, E10397–E10406 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 94.

    Johnson, M. D. & Strong, A. M. Length-weight relationships of Jamaican arthropods. Entomol. News 111, 270–281 (2000).

    Google Scholar 

  • 95.

    Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. (2011).

  • 96.

    Zuur, A., Leno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. Statistics for Biology and Health 36, (Springer, 2009).

  • 97.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1:48 (2015).

  • 98.

    Mazerolle, M. J. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R Packag. version 2.1–1 (2017).

  • 99.

    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2021).

  • 100.

    Burnham, K. P. & Anderson, D. R. Model selection and inference: a practical information-theoretic approach. (Springer-Verlag, 2002).

  • 101.

    Oliver, M. A. & Webster, R. Kriging: a method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 4, 313–332 (1990).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Experimental warming differentially affects vegetative and reproductive phenology of tundra plants

    Why the Earth needs a course correction now