in

Solar geoengineering can alleviate climate change pressures on crop yields

  • 1.

    Lawrence, M. G. et al. Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. Nat. Commun. 9, 3734 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    MacMartin, D. G., Ricke, K. L. & Keith, D. W. Solar geoengineering as part of an overall strategy for meeting the 1.5 °C Paris target. Phil. Trans. R. Soc. A 376, 20160454 (2018).

    ADS 

    Google Scholar 

  • 3.

    Crutzen, P. J. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Climatic Change 77, 211–220 (2006).

    ADS 
    CAS 

    Google Scholar 

  • 4.

    Ahlm, L. et al. Marine cloud brightening—as effective without clouds. Atmos. Chem. Phys. 17, 13071–13087 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 5.

    Muri, H. et al. Climate response to aerosol geoengineering: a multimethod comparison. J. Clim. 31, 6319–6340 (2018).

    ADS 

    Google Scholar 

  • 6.

    Kravitz, B. et al. The Geoengineering Model Intercomparison Project (GeoMIP). Atmos. Sci. Lett. 12, 162–167 (2011).

    ADS 

    Google Scholar 

  • 7.

    Robock, A., Oman, L. & Stenchikov, G. L. Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J. Geophys. Res. Atmos. 113, D16101 (2008).

    ADS 

    Google Scholar 

  • 8.

    Tjiputra, J. F., Grini, A. & Lee, H. Impact of idealized future stratospheric aerosol injection on the large-scale ocean and land carbon cycles. J. Geophys. Res. Biogeosci. 121, 2015JG003045 (2016).

    Google Scholar 

  • 9.

    Russell, L. M. et al. Ecosystem impacts of geoengineering: a review for developing a science plan. Ambio 41, 350–369 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Xia, L. et al. Solar radiation management impacts on agriculture in China: a case study in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 119, 8695–8711 (2014).

    ADS 

    Google Scholar 

  • 11.

    Zhan, P., Zhu, W., Zhang, T., Cui, X. & Li, N. Impacts of sulfate geoengineering on rice yield in china: results from a multimodel ensemble. Earth Future 7, 395–410 (2019).

    ADS 

    Google Scholar 

  • 12.

    Parkes, B., Challinor, A. & Nicklin, K. Crop failure rates in a geoengineered climate: impact of climate change and marine cloud brightening. Environ. Res. Lett. 10, 084003 (2015).

  • 13.

    Yang, H. et al. Potential negative consequences of geoengineering on crop production: a study of Indian groundnut. Geophys. Res. Lett. 43, 11786–11795 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Pongratz, J., Lobell, D. B., Cao, L. & Caldeira, K. Crop yields in a geoengineered climate. Nat. Clim. Change 2, 101–105 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 15.

    Proctor, J., Hsiang, S., Burney, J., Burke, M. & Schlenker, W. Estimating global agricultural effects of geoengineering using volcanic eruptions. Nature 560, 480–483 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 16.

    Tjiputra, J. F. et al. Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci. Model Dev. 6, 301–325 (2013).

    ADS 

    Google Scholar 

  • 17.

    MacMartin, D. G. & Kravitz, B. Mission-driven research for stratospheric aerosol geoengineering. Proc. Natl Acad. Sci. USA 116, 1089–1094 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 18.

    Lombardozzi, D. L. et al. Simulating agriculture in the community land model version 5. J. Geophys. Res. Biogeosci. 125, e2019JG005529 (2020).

    ADS 

    Google Scholar 

  • 19.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Google Scholar 

  • 20.

    O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    ADS 

    Google Scholar 

  • 21.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • 22.

    FAOSTAT (FAO, 2019); http://www.fao.org/faostat/en/?#data/QC

  • 23.

    Tai, A. P. K., Martin, M. V. & Heald, C. L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Change 4, 817–821 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 24.

    Hsiao, J., Swann, A. L. S. & Kim, S.-H. Maize yield under a changing climate: the hidden role of vapor pressure deficit. Agric. For. Meteorol. 279, 107692 (2019).

    ADS 

    Google Scholar 

  • 25.

    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. https://doi.org/10.1111/nph.16485 (2020).

  • 26.

    Rigden, A. J., Mueller, N. D., Holbrook, N. M., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).

    Google Scholar 

  • 27.

    Konings, A. G., Williams, A. P. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284–288 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 28.

    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 29.

    Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2: Tansley review. New Phytol. 165, 351–372 (2004).

    Google Scholar 

  • 30.

    Bishop, K. A., Leakey, A. D. B. & Ainsworth, E. A. How seasonal temperature or water inputs affect the relative response of C3 crops to elevated CO2: a global analysis of open top chamber and free air CO2 enrichment studies. Food Energy Secur. 3, 33–45 (2014).

    Google Scholar 

  • 31.

    Ainsworth, E. A. et al. A meta-analysis of elevated CO2 effects on soybean (Glycine max) physiology, growth and yield. Glob. Change Biol. 8, 695–709 (2002).

    ADS 

    Google Scholar 

  • 32.

    Leakey, A. D. B. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proc. R. Soc. B 276, 2333–2343 (2009).

    CAS 

    Google Scholar 

  • 33.

    Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ. 30, 258–270 (2007).

    CAS 

    Google Scholar 

  • 34.

    National Research Council Climate Intervention: Reflecting Sunlight to Cool Earth (National Academies, 2015); https://doi.org/10.17226/18988

  • 35.

    Lutsko, N. J., Seeley, J. T. & Keith, D. W. Estimating impacts and trade-offs in solar geoengineering scenarios with a moist energy balance model. Geophys. Res. Lett. 47, e2020GL087290 (2020).

    ADS 

    Google Scholar 

  • 36.

    Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    ADS 

    Google Scholar 

  • 37.

    Tilmes, S. et al. The hydrological impact of geoengineering in the geoengineering model intercomparison project (GeoMIP). J. Geophys. Res. Atmos. 118, 11,036–11,058 (2013).

    Google Scholar 

  • 38.

    Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).

    ADS 

    Google Scholar 

  • 39.

    Fisher, R. A. et al. Parametric controls on vegetation responses to biogeochemical forcing in the CLM5. J. Adv. Model. Earth Syst. 11, 2879–2895 (2019).

    ADS 

    Google Scholar 

  • 40.

    Bonan, G. B. et al. Model structure and climate data uncertainty in historical simulations of the terrestrial carbon cycle (1850–2014). Glob. Biogeochem. Cycles 33, 1310–1326 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 41.

    Osborne, T., Rose, G. & Wheeler, T. Variation in the global-scale impacts of climate change on crop productivity due to climate model uncertainty and adaptation. Agric. For. Meteorol. 170, 183–194 (2013).

    ADS 

    Google Scholar 

  • 42.

    Peng, B. et al. Improving maize growth processes in the community land model: implementation and evaluation. Agric. For. Meteorol. 250–251, 64–89 (2018).

    ADS 

    Google Scholar 

  • 43.

    Buzan, J. R. & Huber, M. Moist heat stress on a hotter earth. Annu. Rev. Earth Planet. Sci. 48, 623–655 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 44.

    Wieder, W. R. et al. Beyond static benchmarking: using experimental manipulations to evaluate land model assumptions. Glob. Biogeochem. Cycles 33, 1289–1309 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 45.

    Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 46.

    Cheng, S. J. et al. Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems. Agric. For. Meteorol. 201, 98–110 (2015).

    ADS 

    Google Scholar 

  • 47.

    Shao, L. et al. The fertilization effect of global dimming on crop yields is not attributed to an improved light interception. Glob. Change Biol. 26, 1697–1713 (2020).

    ADS 

    Google Scholar 

  • 48.

    Vattioni, S. et al. Exploring accumulation-mode H2SO4 versus SO2 stratospheric sulfate geoengineering in a sectional aerosol–chemistry–climate model. Atmos. Chem. Phys. 19, 4877–4897 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 49.

    Levis, S., Badger, A., Drewniak, B., Nevison, C. & Ren, X. CLMcrop yields and water requirements: avoided impacts by choosing RCP 4.5 over 8.5. Climatic Change 146, 501–515 (2018).

    ADS 

    Google Scholar 

  • 50.

    Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).

    Google Scholar 

  • 51.

    Lauvset, S. K., Tjiputra, J. & Muri, H. Climate engineering and the ocean: effects on biogeochemistry and primary production. Biogeosciences 14, 5675–5691 (2017).

    ADS 

    Google Scholar 

  • 52.

    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change 109, 117–161 (2011).

    ADS 

    Google Scholar 

  • 53.

    West, T. O. et al. Cropland carbon fluxes in the United States: increasing geospatial resolution of inventory-based carbon accounting. Ecol. Appl. 20, 1074–1086 (2010).

    Google Scholar 

  • 54.

    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 55.

    Farquhar, G., von Caemmerer, Svon & Berry, J. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    CAS 

    Google Scholar 

  • 56.

    Collatz, G. J., Ribas-Carbo, M. & Berry, J. A. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Funct. Plant Biol. 19, 519–538 (1992).

    Google Scholar 

  • 57.

    Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).

    ADS 

    Google Scholar 

  • 58.

    Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nösberger, J. & Ort, D. R. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312, 1918–1921 (2006).

    ADS 
    CAS 

    Google Scholar 

  • 59.

    The NCAR Command Language (NCL, Version 6.5.0) (UCAR, NCAR, CISL, TDD, 2018); https://doi.org/10.5065/D6WD3XH5


  • Source: Ecology - nature.com

    Susan Solomon, scholar of atmospheric chemistry and environmental policy, delivers Killian Lecture

    Hydrologic variation influences stream fish assemblage dynamics through flow regime and drought