Robert-Gangneux, F. & Darde, M. L. Epidemiology of and diagnostic strategies for Toxoplasmosis. Clin. Microbiol. Rev. 25, 264–296 (2012).
Google Scholar
VanWormer, E., Fritz, H., Shapiro, K., Mazet, J. A. K. & Conrad, P. A. Molecules to modeling: Toxoplasma gondii oocysts at the human–animal–environment interface. Comp. Immunol. Microbiol. Infect. Dis. 36, 217–231 (2013).
Google Scholar
Cook, A. J. C. Sources of toxoplasma infection in pregnant women: European multicentre case-control study Commentary: Congenital toxoplasmosis—further thought for food. BMJ 321, 142–147 (2000).
Google Scholar
Spalding, S. M., Amendoeira, M. R. R., Klein, C. H. & Ribeiro, L. C. Serological screening and toxoplasmosis exposure factors among pregnant women in South of Brazil. Rev. Soc. Bras. Med. Trop. 38, 173–177 (2005).
Google Scholar
Jones, J. L. et al. Risk factors for Toxoplasma gondii infection in the United States. Clin. Infect. Dis. 49, 878–884 (2009).
Google Scholar
Egorov, A. I. et al. Environmental risk factors for Toxoplasma gondii infections and the impact of latent infections on allostatic load in residents of Central North Carolina. BMC Infect. Dis. 18, 421. https://doi.org/10.1186/s12879-018-3343-y (2018).
Google Scholar
Shapiro, K. et al. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterborne Parasitol. 15, e00049; https://doi.org/10.1016/j.fawpar. (2019).
Hill, D. et al. Identification of a sporozoite-specific antigen from Toxoplasma gondii. J. Parasitol. 97, 328–337 (2011).
Google Scholar
Ballari, S. A. & Barrios-García, M. N. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges: A review of wild boar Sus scrofa diet. Mamm. Rev. 44, 124–134 (2014).
Google Scholar
Kodera, Y., Kanzaki, N., Ishikawa, N. & Minagawa, A. Food habits of wild boar (Sus scrofa) inhabiting Iwami District, Shimane Prefecture, western Japan (In Japanese). Mamm. Sci. 53, 279–287 (2013).
Chambers, L. K., Singleton, G. R. & Krebs, C. J. Movements and social organization of wild house mice (Mus domesticus) in the wheatlands of northwestern Victoria, Australia. J. Mammal. 81, 59–69 (2000).
Oka, T. Home range and mating system of two sympatric field mouse species, Apodemus speciosus and Apodemus argenteus. Ecol. Res. 7, 163–169 (1992).
Google Scholar
Yatake, H., Nashimoto, M., Shimano, K., Matuki, R. & Shiraki, S. Present status and subjects of estimation methods of Japanese hare (Lepus brachyurus) density (in Japanese). Mamm. Sci. 42, 23–34 (2002).
Setoguchi, M. Utilization of holes and home ranges in the Japanese long-tailed mice (Apodemus argenteus) (in Japanese). Jap. J. Ecol. 31, 385–394 (1981).
Rostami, A. et al. The global seroprevalence of Toxoplasma gondii among wild boars: A systematic review and meta-analysis. Vet. Parasitol. 244, 12–20 (2017).
Google Scholar
Lopez, A. L., Pineda, E., Garakian, A. & Cherry, J. D. Effect of heat inactivation of serum on Bordetella pertussis antibody determination by enzyme-linked immunosorbent assay. Diagn. Microbiol. Infect. Dis. 30, 21–24 (1998).
Google Scholar
Taniguchi, Y. et al. A Toxoplasma gondii strain isolated in Okinawa, Japan shows high virulence in Microminipigs. Parasitol. Int. 72, 101935; https://doi.org/10.1016/j.parint.2019.101935 (2019).
Tadano, R., Nagai, A. & Moribe, J. Local-scale genetic structure in the Japanese wild boar (Sus scrofa leucomystax): insights from autosomal microsatellites. Conserv. Genet. 17, 1125–1135 (2016).
Google Scholar
Ikeda, T., Asano, M., Kuninaga, N. & Suzuki, M. Monitoring relative abundance index and age ratios of wild boar (Sus scrofa) in small scale population in Gifu Prefecture, Japan during classical swine fever outbreak. J. Vet. Med. Sci. 82, 861–865 (2020).
Google Scholar
Matsuo, K., Uetsu, H., Takashima, Y. & Abe, N. High Occurrence of Sarcocystis infection in sika deer Cervus nippon centralis and Japanese wild boar Sus scrofa leucomystax and molecular characterization of Sarcocystis and Hepatozoon isolates from their muscles (in Japanese). Jpn. J. Zoo. Wildl. Med. 21, 35–40 (2016).
Google Scholar
Ogedengbe, M. E. et al. Molecular phylogenetic analyses of tissue coccidia (sarcocystidae; apicomplexa) based on nuclear 18s rDNA and mitochondrial COI sequences confirms the paraphyly of the genus Hammondia. Parasitol. Open 2, e2; https://doi.org/10.1017/pao.2015.7 (2016).
Moon, M. H. Serological cross-reactivity between Sarcocystis and Toxoplasma in pigs. Kor. J. Parasitol. 25, 188–194 (1987).
Google Scholar
Dubey, J. P. et al. All about Toxoplasma gondii infections in pigs: 2009–2020. Vet. Parasitol. 288, 109185 (2020).
Puchalska, M. et al. Prevalence of Toxoplasma gondii antibodies in wild boar (Sus scrofa) from Strzałowo Forest Division, Warmia and Mazury Region, Poland. Ann. Agric. Environ. Med. 28, 237–242 (2021).
Dubey, J. P. et al. Genotyping of viable Toxoplasma gondii from the first national survey of feral swine revealed evidence for sylvatic transmission cycle, and presence of highly virulent parasite genotypes. Parasitology 147, 295–302 (2020).
Google Scholar
Kia, E. B., Mirhendi, H., Rezaeian, M., Zahabiun, F. & Sharbatkhori, M. First molecular identification of Sarcocystis miescheriana (Protozoa, Apicomplexa) from wild boar (Sus scrofa) in Iran. Exp. Parasitol. 127, 724–726 (2011).
Google Scholar
Coelho, C. et al. Unraveling Sarcocystis miescheriana and Sarcocystis suihominis infections in wild boar. Vet. Parasitol. 212, 100–104 (2015).
Google Scholar
Gazzonis, A. L. et al. Prevalence and molecular characterization of Sarcocystis miescheriana and Sarcocystis suihominis in wild boars (Sus scrofa) in Italy. Parasitol. Res. 118, 1271–1287 (2019).
Google Scholar
Huang, Z. et al. Morphological and molecular characterizations of Sarcocystis miescheriana and Sarcocystis suihominis in domestic pigs (Sus scrofa) in China. Parasitol. Res. 118, 3491–3496 (2019).
Google Scholar
Matsuo, K. et al. Seroprevalence of Toxoplasma gondii infection in cattle, horses, pigs and chickens in Japan. Parasitol. Int. 63, 638–639 (2014).
Google Scholar
Singer, F., Otto, D., Tipton, A. & Hable, C. Home ranges, movements, and habitat use of European wild boar in Tennessee. J. Wildl. Manag. 45, 343–353 (1981).
Google Scholar
Hollings, T., Jones, M., Mooney, N. & McCallum, H. Wildlife disease ecology in changing landscapes: Mesopredator release and toxoplasmosis. Int. J. Parasitol. Parasites Wildl. 2, 110–118 (2013).
Google Scholar
Maeda, T., Nakashita, R., Shionosaki, K., Yamada, F. & Watari, Y. Predation on endangered species by human-subsidized domestic cats on Tokunoshima Island. Sci. Rep. 9, 16200. https://doi.org/10.1038/s41598-019-52472-3 (2019).
QGIS Development Team. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. http://www.qgis.org/en/site/ (2021).
Verma, S. K., Lindsay, D. S., Grigg, M. E. & Dubey, J. P. Isolation, culture and cryopreservation of Sarcocystis species. Curr. Protoc. Microbiol. https://doi.org/10.1002/cpmc.32 (2017).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).
Robin, X. et al. pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics 12, 77 (2011).
Google Scholar
Source: Ecology - nature.com