in

Temporal analysis shows relaxed genetic erosion following improved stocking practices in a subarctic transnational brown trout population

  • 1.

    Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10(2), 121–139 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Leigh, D. M., Hendry, A. P., Vázquez-Domínguez, E. & Friesen, V. L. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evol. Appl. 12(8), 1505–1512 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Habel, J. C., Husemann, M., Finger, A., Danley, P. D. & Zachos, F. E. The relevance of time series in molecular ecology and conservation biology. Biol. Rev. 89(2), 484–492 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Klütsch, C. F. C. et al. Genetic changes caused by restocking and hydroelectric dams in demographically bottlenecked brown trout in a transnational subarctic riverine system. Ecol. Evol. 9(10), 6068–6081 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Hansen, M. M., Fraser, D. J., Meier, K. & Mensberg, K.-L.D. Sixty years of anthropogenic pressure: A spatio-temporal genetic analysis of brown trout populations subject to stocking and population declines. Mol. Ecol. 18(12), 2549–2562 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Savary, R. et al. Stocking activities for the Arctic char in Lake Geneva: Genetic effects in space and time. Ecol. Evol. 7(14), 5201–5211 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Hughes, J. B., Daily, G. C. & Ehrlich, P. R. Population diversity: its extent and extinction. Science 278, 689–692 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Perrier, C., Guyomard, R., Bagliniere, J.-L., Nikolic, N. & Evanno, G. Changes in the genetic structure of Atlantic salmon populations over four decades reveal substantial impacts of stocking and potential resiliency. Ecol. Evol. 3(7), 2334–2349 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Vøllestad, L. A. & Hesthagen, T. Stocking of freshwater fish in Norway: management goals and effects. Nordic J. Freshwater Res. 75, 143–152 (2001).

    Google Scholar 

  • 10.

    Christie, M. R., Marine, M. L., French, R. A., Waples, R. S. & Blouin, M. S. Effective size of a wild salmonid population is greatly reduced by hatchery supplementation. Heredity 109, 254–260 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Araki, H., Cooper, B. & Blouin, M. S. Carry-over effect of captive breeding reduces reproductive fitness of wild-born descendants in the wild. Biol. Lett. 5, 621–624 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    O’Sullivan, R. J. et al. Captive-bred Atlantic salmon released into the wild have fewer offspring than wild-bred fish and decrease population productivity. Proc. R. Soc. B 287, 20201671 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Amundsen, P.-A. et al. Invasion of vendace Coregonus albula in a subarctic watercourse. Biol. Conserv. 88(3), 405–413 (1999).

    Article 

    Google Scholar 

  • 14.

    Jensen, H., Bøhn, T., Amundsen, P.-A. & Aspholm, P. E. Feeding ecology of piscivorous brown trout (Salmo trutta L.) in a subarctic watercourse. Ann. Zool. Fenn. 41(1), 319–328 (2004).

    Google Scholar 

  • 15.

    Jensen, H. et al. Predation by brown trout (Salmo trutta) along a diversifying prey community gradient. Can. J. Fish. Aquat. Sci. 65, 1831–1841 (2008).

    Article 

    Google Scholar 

  • 16.

    Jensen, H. et al. Food consumption rates of piscivorous brown trout (Salmo trutta) foraging on contrasting coregonid prey. Fish. Manag. Ecol. 22, 295–306 (2015).

    Article 

    Google Scholar 

  • 17.

    Haugland, Ø. Langtidsstudie av næringsøkologi og vekst hos storørret i Pasvikvassdraget. Mastergradsoppgave i biologi (Universitetet i Tromsø, Fakultet for Biovitenskap, fiskeri og økonomi, Institutt for arktisk og marin biologi, 2014).

  • 18.

    Gossieaux, P., Bernatchez, L., Sirois, P. & Garant, D. Impacts of stocking and its intensity on effective population size in Brook Charr (Salvelinus fontinalis) populations. Conserv. Genet. 20(4), 729–742 (2019).

    Article 

    Google Scholar 

  • 19.

    Pinter, K., Epifanio, J. & Unfer, G. Release of hatchery-reared brown trout (Salmo trutta) as a threat to wild populations? A case study from Austria. Fish. Res. 219, 105296 (2019).

    Article 

    Google Scholar 

  • 20.

    Wringe, B. F., Purchase, C. F. & Fleming, I. A. In search of a “cultured fish phenotype”: A systematic review, meta-analysis and vote-counting analysis. Rev. Fish Biol. Fish. 26(3), 351–373 (2016).

    Article 

    Google Scholar 

  • 21.

    Gossieaux, P. et al. Effects of genetic origin on phenotypic divergence in Brook Trout populations stocked with domestic fish. Ecosphere 11(5), e03119 (2020).

    Article 

    Google Scholar 

  • 22.

    Fleming, I. A., Jonsson, B. & Gross, M. R. Phenotypic divergence of sea-ranched, farmed, and wild salmon. Can. J. Fish. Aquat. Sci. 51, 2808–2824 (1994).

    Article 

    Google Scholar 

  • 23.

    Heath, D. D., Heath, J. W., Bryden, C. A., Johnson, R. M. & Fox, C. W. Rapid evolution of egg size in captive salmon. Science 299, 1738–1740 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Naish, K. A., Seamons, T. R., Dauer, M. B., Hauser, L. & Quinn, T. P. Relationship between effective population size, inbreeding and adult fitness-related traits in a steelhead (Oncorhynchus mykiss) population released in the wild. Mol. Ecol. 22, 1295–1309 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Van Oosterhout, C., Weetman, D. & Hutchinson, W. F. Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol. Ecol. Notes 6(1), 255–256 (2006).

    Article 

    Google Scholar 

  • 26.

    Rousset, F. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8(6), 103–106 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Peakall, R. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).

    Article 

    Google Scholar 

  • 28.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28(19), 2537–2539 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Szpiech, Z. A., Jacobsson, M. & Rosenberg, N. A. ADZE: A rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24(21), 2498–2504 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Waples, R. S. & Anderson, E. C. Purging putative siblings from population genetic data sets: A cautionary view. Mol. Ecol. 26(5), 1211–1224 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Pew, J., Muir, P. H., Wang, J. & Frasier, T. R. Related: An R package for analysing pairwise relatedness from codominant molecular markers. Mol. Ecol. Resour. 15(3), 557–561 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Piry, S., Luikart, G. & Cornuet, J.-M. Bottleneck: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Heredity 90(4), 502–503 (1999).

    Article 

    Google Scholar 

  • 35.

    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144(4), 2001–2014 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Peery, M. Z. et al. Reliability of genetic bottleneck tests for detecting recent population declines. Mol. Ecol. 21(14), 3403–3418 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Luikart, G. Usefulness of molecular markers for detecting population bottlenecks and monitoring genetic change. Ph. D. Thesis. (University of Montana, 1997).

  • 38.

    Do, C. et al. NEESTIMATOR v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Waples, R. S. & Do, C. LDNE: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8, 753–756 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Zhdanova, O. L. & Pudovkin, A. I. Nb_HetEx: A program to estimate the effective number of breeders. J. Hered. 99(6), 694–695 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 41.

    Nomura, T. Estimation of effective number of breeders from molecular coancestry of single cohort sample. Evol. Appl. 1, 462–474 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Jones, O. R. & Wang, J. COLONY: A program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Wang, J. A. comparison of single-sample estimators of effective population sizes from genetic data. Mol. Ecol. 25, 4692–4711 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Nei, M. & Chesser, R. K. Estimation of fixation indexes and gene diversities. Ann. Hum. Genet. 47(3), 253–259 (1983).

    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Jost, L. Gst and its relatives do not measure differentiation. Mol. Ecol. 17(18), 4015–4026 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodological) 57(1), 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • 47.

    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2019).

  • 48.

    White, T., van der Ende, J. & Nichols, T. E. Beyond Bonferroni revisited: Concerns over inflated false positive research findings in the fields of conservation genetics, biology, and medicine. Conserv. Genet. 20, 927–937 (2019).

    Article 

    Google Scholar 

  • 49.

    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164(4), 1567–1587 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9(5), 1322–1332 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic trees. in 2010 Gateway Computing Environments Workshop (GCE) 1–8 (2010).

  • 52.

    Besnier, F. & Glover, K. A. ParallelStructure: A R package to distribute parallel runs of the population genetics program STRUCTURE on multi-core computers. PLoS ONE 8(7), e70651 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Li, Y.-L. & Liu, J.-X. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18(1), 176–177 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 54.

    Puechmaille, S. J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16(3), 608–627 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 55.

    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15(5), 1179–1191 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Anderson, E. C. & Dunham, K. K. The influence of family groups on inferences made with the program structure. Mol. Ecol. Resour. 8, 1219–1229 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Dray, S. & Dufour, A. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22(4), 1–20 (2007).

    Article 

    Google Scholar 

  • 58.

    Levene, H. Robust tests for equality of variances. in Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (Olkin, I., Hotelling, H. et al. eds.). 278–292 (Stanford University Press, 1960).

  • 59.

    Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.4.0. https://CRAN.R-project.org/package=rstatix (2020).

  • 60.

    Wang, J. An estimator for pairwise relatedness using molecular markers. Genetics 160, 1203–1215 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    White, S. L., Miller, W. L., Dowell, S. A., Bartron, M. L. & Wagner, T. Limited hatchery introgression into wild brook trout (Salvelinus fontinalis) populations despite reoccurring stocking. Evol. Appl. 11(9), 1567–1581 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Lehnert, S. J. et al. Multiple decades of stocking has resulted in limited hatchery introgression in wild brook trout (Salvelinus fontinalis) populations of Nova Scotia. Evol. Appl. 13(5), 1069–1089 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Knudsen, C. M. et al. Comparison of life history traits between first-generation hatchery and wild upper Yakima River spring Chinook salmon. Trans. Am. Fish. Soc. 135, 1130–1144 (2006).

    Article 

    Google Scholar 

  • 64.

    Hansen, M. M. & Mensberg, K.-L.D. Admixture analysis of stocked brown trout populations using mapped microsatellite DNA markers: Indigenous trout persist in introgressed populations. Biol. Lett. 5, 656–659 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Christie, M. R., Ford, M. J. & Blouin, M. S. On the reproductive success of early-generation hatchery fish in the wild. Evol. Appl. 7, 883–896 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Fraser, D. J. et al. Population correlates of rapid captive-induced maladaptation in a wild fish. Evol. Appl. 12, 1305–1317 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 67.

    Fischer, J. R. et al. Growth, condition, and trophic relations of stocked trout in southern Appalachian mountain streams. Trans. Am. Fish. Soc. 148, 771–784 (2019).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Hendry, A. P. & Day, T. Population structure attributable to reproductive time: Isolation by time and adaptation by time. Mol. Ecol. 14, 901–916 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Gauthey, Z. et al. Brown trout spawning habitat selection and its effects on egg survival. Ecol. Freshwater Fish 26, 133–140 (2017).

    Article 

    Google Scholar 

  • 70.

    Dupont, P.-P., Bourret, V. & Bernatchez, L. Interplay between ecological, behavioural and historical factors in shaping the genetic structure of sympatric walleye populations (Sander vitreus). Mol. Ecol. 16, 937–951 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Sandoval-Castillo, J. et al. SWINGER: A user-friendly computer program to establish captive breeding groups that minimize relatedness without pedigree information. Mol. Ecol. Resour. 17, 278–287 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Phenotypic plasticity of fungal traits in response to moisture and temperature

    Body size dependent dispersal influences stability in heterogeneous metacommunities