in

Temporal division of labor in an aphid social system

  • 1.

    Wilson, E. O. The Insect Societies (Harvard University Press, Cambridge, 1971).

    Google Scholar 

  • 2.

    Wilson, E. O. Sociobiology: The New Synthesis (Harvard University Press, Cambridge, 1975).

    Google Scholar 

  • 3.

    Oster, G. F. & Wilson, E. O. Caste and Ecology in the Social Insects (Princeton University Press, Princeton, 1978).

    Google Scholar 

  • 4.

    Seeley, T. D. Honeybee Ecology: A Study of Adaptation in Social Life (Princeton University Press, Princeton, 1985).

    Google Scholar 

  • 5.

    Seeley, T. D. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 11, 287–293 (1982).

    Article  Google Scholar 

  • 6.

    Robinson, G. E. Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37, 637–665 (1992).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Beshers, S. N. & Fewell, J. H. Models of division of labor in social insects. Annu. Rev. Entomol. 46, 413–440 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Johnson, B. R. Within-nest temporal polyethism in the honey bee. Behav. Ecol. Sociobiol. 62, 777–784 (2008).

    Article  Google Scholar 

  • 9.

    Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, Cambridge, 1990).

    Google Scholar 

  • 10.

    Crosland, M. W. J., Lok, C. M., Wong, T. C., Shakarad, M. & Traniello, J. F. A. Division of labour in a lower termite: The majority of tasks are performed by older workers. Anim. Behav. 54, 999–1012 (1997).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Hinze, B. & Leuthold, R. H. Age related polyethism and activity rhythms in the nest of the termite Macrotermes bellicosus (Isoptera, Termitidae). Insect. Soc. 46, 392–397 (1999).

    Article  Google Scholar 

  • 12.

    Cameron, S. A. Temporal patterns of division of labor among workers in the primitively eusocial bumble bee, Bombus griseocoffis (Hymenoptera: Apidae). Ethology 80, 137–151 (1989).

    Article  Google Scholar 

  • 13.

    Naug, D. & Gadagkar, R. The role of age in temporal polyethism in a primitively eusocial wasp. Behav. Ecol. Sociobiol. 42, 37–47 (1998).

    Article  Google Scholar 

  • 14.

    Biedermann, P. H. W. & Taborsky, M. Larval helpers and age polyethism in ambrosia beetles. Proc. Natl. Acad. Sci. USA 108, 17064–17069 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 15.

    Wakano, J. N., Nakata, K. & Yamamura, N. Dynamic model of optimal age polyethism in social insects under stable and fluctuating environments. J. Theor. Biol. 193, 153–165 (1998).

    Article  Google Scholar 

  • 16.

    Duarte, A., Weissing, F. J., Pen, I. & Keller, L. An evolutionary perspective on self-organized division of labor in social insects. Annu. Rev. Ecol. Evol. Syst. 42, 91–110 (2011).

    Article  Google Scholar 

  • 17.

    Stern, D. L. & Foster, W. A. The evolution of soldiers in aphids. Biol. Rev. 71, 27–79 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Aoki, S. & Kurosu, U. A review of the biology of Cerataphidini (Hemiptera, Aphididae, Hormaphidinae), focusing mainly on their life cycles, gall formation, and soldiers. Psyche 2010, 380351 (2010).

    Google Scholar 

  • 19.

    Abbot, P., Tooker, J. & Lawson, S. P. Chemical ecology and sociality in aphids: Opportunities and directions. J. Chem. Ecol. 44, 770–784 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Aoki, S. Colophina clematis (Homoptera, Pemphigidae), an aphid species with” soldiers”. Kontyu 5, 276–282 (1977).

    Google Scholar 

  • 21.

    Aoki, S. & Kurosu, U. Gall cleaning by the aphid Hormaphis betulae. J. Ethol. 9, 51–55 (1989).

    Google Scholar 

  • 22.

    Benton, T. G. & Foster, W. A. Altruistic housekeeping in a social aphid. Proc. R. Soc. B 247, 199–202 (1992).

    ADS  Article  Google Scholar 

  • 23.

    Aoki, S. & Kurosu, U. Soldiers of Astegopteryx styraci (Homoptera, Aphidoidea) clean their gall. Jpn. J. Entomol. 57, 407–416 (1989).

    Google Scholar 

  • 24.

    Aoki, S., Kurosu, U. & Stern, D. L. Aphid soldiers discriminate between soldiers and non-soldiers, rather than between kin and non-kin Ceratoglyphina bambusae. Anim. Behav. 42, 865–866 (1991).

    Article  Google Scholar 

  • 25.

    Kurosu, U., Narukawa, J., Buranapanichpan, S. & Aoki, S. Head-plug defense in a gall aphid. Insect. Soc. 53, 86–91 (2006).

    Article  Google Scholar 

  • 26.

    Kurosu, U., Aoki, S. & Fukatsu, T. Self-sacrificing gall repair by aphid nymphs. Proc. R. Soc. B 270, S12–S14 (2003).

    PubMed  Article  Google Scholar 

  • 27.

    Pike, N. & Foster, W. Fortress repair in the social aphid species Pemphigus spyrothecae. Anim. Behav. 67, 909–914 (2004).

    Article  Google Scholar 

  • 28.

    Kutsukake, M., Shibao, H., Uematsu, K. & Fukatsu, T. Scab formation and wound healing of plant tissue by soldier aphid. Proc. R. Soc. B 276, 1555–1563 (2009).

    PubMed  Article  Google Scholar 

  • 29.

    Kutsukake, M. et al. Exaggeration and cooption of innate immunity for social defense. Proc. Natl. Acad. Sci. USA 116, 8950–8959 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Aoki, S. Evolution of sterile soldiers in aphids. In Animal Societies: Theories andFacts (eds Ito, Y. et al.) 53–65 (Japan Scientific Societies Press, Tokyo, 1987).

    Google Scholar 

  • 31.

    Aoki, S. & Kurosu, U. Social aphids. In Encyclopedia of Social Insects (ed. Starr, C. K.) (Springer, New York, 2020). https://doi.org/10.1007/978-3-319-90306-4_107-1.

    Google Scholar 

  • 32.

    Aoki, S. & Kurosu, U. Biennial galls of the aphid Astegopteryx styraci on a temperate deciduous tree Styrax obassia. Acta Phytopathol. Entomol. Hung. 25, 57–65 (1990).

    Google Scholar 

  • 33.

    Shibao, H., Kutsukake, M., Lee, J. & Fukatsu, T. Maintenance of soldier-producing aphids on an artificial diet. J. Insect Physiol. 48, 495–505 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Shibao, H., Lee, J. M., Kutsukake, M. & Fukatsu, T. Aphid soldier differentiation: density acts on both embryos and newborn nymphs. Naturwissenschaften 90, 501–504 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 35.

    Shibao, H., Kutsukake, M. & Fukatsu, T. Density triggers soldier production in a social aphid. Proc. R. Soc. B 271, S71–S74 (2004).

    PubMed  Article  Google Scholar 

  • 36.

    Shibao, H., Kutsukake, M. & Fukatsu, T. The proximate cue of density-dependent soldier production in a social aphid. J. Insect Physiol. 50, 143–147 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Shibao, H., Kutsukake, M. & Fukatsu, T. Density-dependent induction and suppression of soldier differentiation in an aphid social system. J. Insect Physiol. 50, 995–1000 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Shibao, H., Kutsukake, M., Matsuyama, S., Fukatsu, T. & Shimada, M. Mechanisms regulating caste differentiation in an aphid social system. Commun. Integr. Biol. 3, 1–5 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Kutsukake, M. et al. Venomous protease of aphid soldier for colony defense. Proc. Natl. Acad. Sci. USA 101, 11338–11343 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 40.

    Stern, D. L., Aoki, S. & Kurosu, U. A test of geometric hypotheses for soldier investment patterns in the gall producing tropical aphid Cerataphis fransseni (Homoptera, Hormaphididae). Insect. Soc. 41, 457–460 (1994).

    Article  Google Scholar 

  • 41.

    Pike, N., Braendle, C. & Foster, W. A. Seasonal extension of the soldier instar as a route to increased defence investment in the social aphid Pemphigus spyrothecae. Ecol. Entomol. 29, 89–95 (2004).

    Article  Google Scholar 

  • 42.

    Pike, N. Specialised placement of morphs within the gall of the social aphid Pemphigus spyrothecae. BMC Evol. Biol. 7, 18 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Uematsu, K., Kutsukake, M., Fukatsu, T., Shimada, M. & Shibao, H. Altruistic colony defense by menopausal female insects. Curr. Biol. 20, 1182–1186 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Uematsu, K., Shimada, M. & Shibao, H. Juveniles and the elderly defend, the middle-aged escape: division of labour in a social aphid. Biol. Let. 9, 20121053 (2013).

    Article  Google Scholar 

  • 45.

    Abe, T., Bignell, D. E., Higashi, M. & Abe, Y. Termites: Evolution, Sociality, Symbioses, Ecology (Springer, Berlin, 2000).

    Google Scholar 

  • 46.

    Shibao, H. Lack of kin discrimination in the eusocial aphid Pseudoregma bambucicola (Homoptera: Aphididae). J. Ethol. 17, 17–24 (1999).

    Article  Google Scholar 

  • 47.

    Abbot, P., Withgott, J. H. & Moran, N. A. Genetic conflict and conditional altruism in social aphid colonies. Proc. Natl. Acad. Sci. USA 98, 12068–12071 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 48.

    Abbot, P. & Chhatre, V. Kin structure provides no explanation for intruders in social aphids. Mol. Ecol. 16, 3659–3670 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Kutsukake, M. et al. An insect-induced novel plant phenotype for sustaining social life in a closed system. Nat. Commun. 3, 1187 (2012).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 50.

    Kutsukake, M. et al. Evolution of soldier-specific venomous protease in social aphids. Mol. Biol. Evol. 25, 2627–2641 (2008).

    CAS  PubMed  Article  Google Scholar 


  • Source: Ecology - nature.com

    Stoichiometric niche, nutrient partitioning and resource allocation in a solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92