in

The effectiveness of national biodiversity investments to protect the wealth of nature

  • 1.

    Huwyler, F., Kappeli, J., Serafimova, K., Swanson, E. & Tobin, J. Conservation Finance: Moving Beyond Donor Funding Toward an Investor-driven Approach (WWF, Credit Suisse and McKinsey & Company, 2014); http://go.nature.com/2Ka5Y2u

  • 2.

    Deutz, A. et al. Financing Nature: Closing the Global Biodiversity Financing Gap: Full Report (Paulson Institute, Nature Conservancy and Cornell Atkinson Center for Sustainability, 2020).

  • 3.

    Halpern, B. et al. Gaps and mismatches between global conservation priorities and spending. Conserv. Biol. 20, 56–64 (2006).

    Article  Google Scholar 

  • 4.

    James, A., Gaston, K. J. & BalmfordA. Can we afford to conserve biodiversity? BioScience 51, 43–52 (2001).

    Article  Google Scholar 

  • 5.

    McCarthy, D. et al. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338, 946–949 (2012).

    CAS  Article  Google Scholar 

  • 6.

    Nature’s Dangerous Decline ‘Unprecedented’; Species Extinction Rates ‘Accelerating’ (IPBES, 2019); http://go.nature.com/2V4ZBN9

  • 7.

    The Global Risks Report 2020 (WEF, 2020); https://go.nature.com/3ahNfg8

  • 8.

    IUCN Views on the Preparation, Scope and Content of the Post-2020 Global Biodiversity Framework (IUCN, 2018); https://go.nature.com/2WlW3ti

  • 9.

    Biodiversity: Finance and the Economic and Business Case for Action (OECD, 2019); https://go.nature.com/3h0F9Kc

  • 10.

    Parker, C. & Cranford, M. The Little Biodiversity Finance Book. A Guide to Proactive Investment in Natural Capital (Global Canopy Program, 2010); https://go.nature.com/3mwyxUJ

  • 11.

    Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).

    Article  Google Scholar 

  • 12.

    Kearney, S. G. et al. Estimating the benefit of well-managed protected areas for threatened species conservation. ORYX 54, 276–284 (2020).

    Article  Google Scholar 

  • 13.

    Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (IIASA, 2020); https://go.nature.com/387GkDq

  • 14.

    Stepping, K. M. K. & Meijer, K. S. The challenges of assessing the effectiveness of biodiversity-related development aid. Trop. Conserv. Sci. https://doi.org/10.1177/1940082918770995 (2018).

  • 15.

    Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl Acad. Sci. USA 110, 12144–12148 (2018).

    Article  Google Scholar 

  • 16.

    Gallo-Cajiao, E. et al. Crowdfunding biodiversity conservation. Conserv. Biol. 32, 1426–1435 (2018).

    Article  Google Scholar 

  • 17.

    Parker, C., Cranford, M., Oakes, N. & Leggett, M. The Little Biodiversity Finance Book 3rd edn (Global Canopy Programme, 2012).

  • 18.

    Arlaud, M. et al. in Towards a Sustainable Bioeconomy: Principles, Challenges and Perspectives (eds Filho, W. L. et al.) Ch. 5 (Springer, 2018); https://doi.org/10.1007/978-3-319-73028-8_5

  • 19.

    Rawat, U. S. & Agarwal, N. K. Biodiversity: concept, threats and conservation. Environ. Conserv. J. 16, 19–28 (2015).

    Article  Google Scholar 

  • 20.

    Gorobets, A. Wild fauna conservation: IUCN-CITES match is required. Ecol. Indic. 112, 106091 (2020).

    Article  Google Scholar 

  • 21.

    Rodrigues, A. S. L. et al. The value of the IUCN Red List for conservation. Trends Ecol. Evol. 21, 71–76 (2006).

    Article  Google Scholar 

  • 22.

    Rao, M., Naro-Maciel, E. & Sterling, E. Protected Areas and Biodiversity Conservation II: Management and Effectiveness (Network of Conservation Educators and Practitioners, 2009).

  • 23.

    Adams, V. M., Iacona, G. D. & Possingham, H. P. Weighing the benefits of expanding protected areas versus managing existing ones. Nat. Sustain. 2, 404–411 (2019).

    Article  Google Scholar 

  • 24.

    BIOFIN The Biodiversity Finance Initiative Workbook 2018 (United Nations Development Programme, 2018).

  • 25.

    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    CAS  Article  Google Scholar 

  • 26.

    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Article  Google Scholar 

  • 27.

    Naidoo, R. et al. Global mapping of ecosystem services and conservation priorities. Proc. Natl Acad. Sci. USA 105, 9495–9500 (2008).

    CAS  Article  Google Scholar 

  • 28.

    Turner, W. et al. Global conservation of biodiversity and ecosystem services. BioScience 57, 868–873 (2007).

    Article  Google Scholar 

  • 29.

    Balmford, A. et al. Economic reasons for conserving wild nature. Science 297, 950–953 (2002).

    CAS  Article  Google Scholar 

  • 30.

    Hily, E. et al. Assessing the cost-effectiveness of a biodiversity conservation policy: a bio-econometric analysis of Natura 2000 contracts in forests. Ecol. Econ. 119, 197-208 (2015).

  • 31.

    Ferraro, P. J., McIntosh, C. & Ospina, M. The effectiveness of the US endangered special act: an econometric analysis using matching methods. J. Environ. Econ. Manag. 54, 245–261 (2007).

    Article  Google Scholar 

  • 32.

    Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl Acad. Sci. USA 110, 12144–12148 (2013).

    CAS  Article  Google Scholar 

  • 33.

    Waldron, A. et al. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, 364–367 (2017).

    CAS  Article  Google Scholar 

  • 34.

    Richerzhagen, C. et al. Why We Need More and Better Biodiversity Aid Briefing Paper 13 (German Development Institute, 2016); https://go.nature.com/2K0S9Dz

  • 35.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

  • 36.

    Karousakis, K. Evaluating the Effectiveness of Policy Instruments for Biodiversity: Impact Evaluation, Cost-effectiveness Analysis and Other Approaches Environment Working Paper No.141 (OECD, 2018).

  • 37.

    Isaza, C., Bofill, W. & Cabrera, H. Cost-effective species conservation: an application to Huemul (Hippocamelus bisulcus) in Chile. Environ. Dev. Econ. 12, 535–551 (2007).

    Article  Google Scholar 

  • 38.

    Alix-Garcia, J. M., Shapiro, E. N. & Sims, K. R. Forest conservation and slippage: evidence from Mexico’s national payments for ecosystem services program. Land Econ. 88, 613–638 (2012).

    Article  Google Scholar 

  • 39.

    Bare, M. Assessing the impact of international conservation aid on deforestation in sub-Saharan Africa. Environ. Res. Lett. 10, 125010 (2015).

    Article  Google Scholar 

  • 40.

    Ferraro, P. J. et al. More strictly protected areas are not necessarily more protective: evidence from Bolivia, Costa Rica, Indonesia, and Thailand. Environ. Res. Lett. 8, 025011 (2013).

    Article  Google Scholar 

  • 41.

    Lindsey, P. A. et al. More than $1 billion needed annually to secure Africa’s protected areas with lions. Proc. Natl Acad. Sci. USA 115, E10788–E10796 (2018).

    CAS  Article  Google Scholar 

  • 42.

    Bonham, C. et al. Conservation trust funds, protected area management effectiveness and conservation outcomes: lessons from the global conservation fund. Parks 20, 89–100 (2014).

    Article  Google Scholar 

  • 43.

    Hein, Lars et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).

    CAS  Article  Google Scholar 

  • 44.

    Natural Capital Accounting and Valuing Ecosystem Services Project (UN, 2019); http://go.nature.com/2K2jsxn

  • 45.

    Ecosystem Valuation and Natural Capital Accounting (Gaborone Declaration for Sustainability in Africa, 2012); http://www.gaboronedeclaration.com/nca

  • 46.

    Climate Public Expenditure and Institutional Review (CPEIR) (UNDP, 2015); https://go.nature.com/2K0C7tp

  • 47.

    BIOFIN Workbook: Mobilising Resources for Biodiversity and Sustainable Development (UND, 2016); https://go.nature.com/3p1PDMb

  • 48.

    Shieh, G. Effect size, statistical power, and sample size for assessing interactions between categorical and continuous variables. Br. J. Math. Stat. Psychol. 72, 136–154 (2019).

    Article  Google Scholar 

  • 49.

    Leon, A. C. & Heo, M. Sample sizes required to detect interactions between two binary fixed-effects in a mixed-effects linear regression model. Comput. Stat. Data Anal. 53, 603–608 (2009).

    Article  Google Scholar 

  • 50.

    Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).

    Article  Google Scholar 

  • 51.

    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).

    CAS  Article  Google Scholar 

  • 52.

    Luther, D. A. et al. Determinants of bird conservation—action implementation and associated population trends of threatened species. Conserv. Biol. 30, 1338–1346 (2016).

    Article  Google Scholar 

  • 53.

    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).

    CAS  Article  Google Scholar 

  • 54.

    Brooks, T. M. et al. Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Sci. Data 3, I60007 (2016).

    Article  Google Scholar 

  • 55.

    Keith, D. A. et al. Scientific foundations for an IUCN Red List of ecosystems. PLoS ONE 8, e62111 (2013).

    CAS  Article  Google Scholar 

  • 56.

    Kaufmann, D., Kraay, A. & Mastruzzi, M. The worldwide governance indicators: methodology and analytical issues. Hague J. Rule Law 3, 220–246 (2011).

    Article  Google Scholar 

  • 57.

    Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle (Academiai Kiado, 1973).

  • 58.

    Bozdogan, H. Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987).

    Article  Google Scholar 

  • 59.

    Angrist, J. D. & Pischke, J.-S. Mostly Harmless Econometrics: An Empiricist’s Companion (Princeton Univ. Press, 2009); http://go.nature.com/3r5t6zA

  • 60.

    Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data 2nd edn (MIT Press, 2010).


  • Source: Ecology - nature.com

    The sources of variation for individual prey-to-predator size ratios

    Alteration of coastal productivity and artisanal fisheries interact to affect a marine food web