Pachauri, R. K. et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).
International Geosphere Biosphere Programme (IGBP). Ocean acidification summary for policymakers (2013).
Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).
Google Scholar
Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 1–7. https://doi.org/10.1038/s41559-017-0084 (2017).
Google Scholar
Dupont, S., Hall, E., Calosi, P. & Lundve, B. First evidence of altered sensory quality in a shellfish exposed to decreased pH relevant to ocean acidification. J. Shellfish Res. 33, 857–861 (2014).
Google Scholar
Lemasson, A. J. et al. Sensory qualities of oysters unaltered by a short exposure to combined elevated pCO2 and temperature. Front. Mar. Sci. 4, 352. https://doi.org/10.3389/fmars.2017.00352 (2017).
Google Scholar
San Martin, V. A. et al. Linking social preferences and ocean acidification impacts in mussel aquaculture. Sci. Rep. 9, 1–9 (2019).
Google Scholar
Shahidi, F. & Cadwallader, K. R. Flavor and lipid chemistry of seafoods: an overview (1997).
Nelson, G. et al. An amino acid taste receptor. Nature 416, 199–202 (2002).
Google Scholar
Guillen, J. et al. Global seafood consumption footprint. Ambio 48(2), 111–122 (2019).
Google Scholar
FAO. The state of world fisheries and aquaculture. Contributing to food security and nutrition for all. FAO, Rome (2016).
FAO. The state of world fisheries and aquaculture—sustainability in action (2020).
Gerland, P. et al. World population stabilization unlikely this century. Science 346(6206), 234–237 (2014).
Google Scholar
Minh, N. P., Nhi, T. T. Y., Hiep, P. T. H., Nhan, D. T. & Anh, S. T. Quality characteristics of dried salted black tiger shrimp (Penaeus monodon) affected by different pre-treatment and drying variables. J. Pharm. Sci. Res. 11, 1377–1381 (2019).
Google Scholar
FAO. The state of food and agriculture (1980).
Solms, J. Taste of amino acids, peptides, and proteins. J. Agric. Food Chem. 17(4), 686–688 (1969).
Google Scholar
Jiro, K., Akira, S. & Akimitsu, K. The contribution of peptides and amino acids to the taste of foodstuffs. J. Agric. Food Chem. 17(4), 689–695 (1969).
Google Scholar
Schiffman, S. S., Sennewald, K. & Gagnon, J. Comparison of taste qualities and thresholds of D-and L-amino acids. Physiol. Behav. 27(1), 51–59 (1981).
Google Scholar
Kawai, M., Sekine-Hayakawa, Y., Okiyama, A. & Ninomiya, Y. Gustatory sensation of L- and D-amino acids in humans. Amino Acids 43, 2349–2358 (2012).
Google Scholar
Dissanayake, A., Clough, R., Spicer, J. I. & Jones, M. B. Effects of hypercapnia on acid–base balance and osmo-/iono-regulation in prawns (Decapoda: Palaemonidae). Aquat. Biol. 11, 27–36 (2010).
Google Scholar
Ries, J., Choen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).
Google Scholar
Liu, Y. W., Sutton, J. N., Ries, J. B. & Eagle, R. A. Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification. Sci. Adv. 6, eaax1314 (2020).
Google Scholar
Corteel, M. et al. Moult cycle of laboratory-raised Penaeus (Litopenaeus) vannamei and P. monodon. Aquac. Int. 20, 13–18 (2011).
Google Scholar
Taylor, J. R., Gilleard, J. M., Allen, M. C. & Deheyn, D. D. Effects of CO2-induced pH reduction on the exoskeleton structure and biophotonic properties of the shrimp Lysmata californica. Sci. Rep. 5, 10608 (2015).
Google Scholar
McLean, E. L., Katenka, N. V. & Seibel, B. A. Decreased growth and increased shell disease in early benthic phase Homarus americanus in response to elevated CO2. Mar. Ecol. Prog. Ser. 596, 113–126 (2018).
Google Scholar
Chen, S. M. & Chen, J. C. Effect of low pH on the acid-base balance, osmolality and ion concentrations of giant freshwater prawn Macrobrachium rosenbergii. J. Fish. Soc. Taiwan 30, 227–239 (2003).
Kurihara, H., Matsui, M., Furukawa, H., Hayashi, M. & Ishimatsu, A. Long-term effects of predicted future seawater CO2 conditions on the survival and growth of the marine shrimp Palaemon pacificus. J. Exp. Mar. Biol. Ecol. 367, 41–46 (2008).
Google Scholar
Findlay, H. S., Kendall, M. A., Spicer, J. I. & Widdicombe, S. Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar. Ecol. Prog. Ser. 389, 193–202 (2009).
Google Scholar
Cameron, J. N. & Iwama, G. K. Compensation of progressive hypercapnia in channel catfish and blue crabs. J. Exp. Biol. 133, 183–197 (1987).
Google Scholar
Pane, E. F. & Barry, J. P. Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar. Ecol. Prog. Ser. 334, 1–9 (2007).
Google Scholar
Lowder, K. B., Allen, M. C., Day, J. M. D., Deheyn, D. D. & Taylor, J. R. A. Assessment of ocean acidification and warming on the growth, calcification, and biophotonics of a California grass shrimp. ICES J. Mar. Sci. 74, 1150–1158 (2017).
Google Scholar
Pörtner, H. O., Langenbunh, M. & Reipschläger, A. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr. 60, 705–718 (2004).
Google Scholar
Dissanayake, A. & Ishimatsu, A. Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeide). ICES J. Mar. Sci. 68, 1147–1154 (2011).
Google Scholar
Pan, L. Q., Zhang, L. J. & Liu, H. Y. Effects of salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlarvae. Aquaculture 273, 711–720 (2007).
Google Scholar
Rathburn, C. K. et al. Transcriptomic responses of juvenile Pacific whiteleg shrimp, Litopenaeus vannamei, to hypoxia and hypercapnic hypoxia. Physiol. Genomics 45, 794–807 (2013).
Google Scholar
Yu, Q. R. et al. Growth and health responses to a long-term pH stress in Pacific white shrimp Litopenaeus vannamei. Aquacul. Rep. 16, 100280 (2020).
Google Scholar
Chen, J. C., Chen, C. T. & Cheng, S. Y. Nitrogen excretion and changes of hemocyanin, protein and free amino acid levels in the hemolymph of Penaeus monodon exposed to different concentrations of ambient ammonia-N at different salinity levels. Mar. Ecol. Prog. Ser. 110, 85–94 (1994).
Google Scholar
Dayal, J. S., Ambasankar, K., Rajendran, R., Rajaram, V. & Muralidhar, M. Effect of abiotic salinity stress on haemolymph metabolic profiles in cultured tiger shrimp Penaeus monodon. Int. J. Bio-resour. Stress Manag. 4, 339–343 (2013).
Ardo, Y. Flavour formation by amino acid catabolism. Biotechnol. Adv. 24, 238–242 (2006).
Google Scholar
Engström-Öst, J. et al. Eco-physiological responses of copepods and pteropods to ocean warming and acidification. Sci. Rep. 9, 4748 (2019).
Google Scholar
Liao, H. et al. Impact of ocean acidification on the energy metabolism and antioxidant responses of the Yesso scallop (Patinopecten yessoensis). Front. Physiol. 27, 1967 (2019).
Google Scholar
Richard, L. et al. The effect of choline and cystine on the utilisation of methionine for protein accretion, remethylation and trans-sulfuration in juvenile shrimp Penaeus monodon. Br. J. Nutr. 28, 825–835 (2011).
Google Scholar
Peng, B., Huang, R. & Zhou, X. oxidation resistance of the sulfur amino acids: methionine and cysteine. Biomed. Res. Int. 2017, 9584932 (2017).
DeVries, M. S. et al. Stress physiology and weapon integrity of intertidal mantis shrimp under future ocean conditions. Sci. Rep. 6, 38637 (2016).
Google Scholar
Dupont, S. & Thorndyke, M. C. Impact of CO2-driven ocean acidification on invertebrates early life-history—What we know, what we need to know and what we can do. Biogeosci. Discuss. 6, 3109–3131 (2009).
Google Scholar
Weerathunga, V. V. et al. Impacts of pH on the fitness and immune system of pacific white shrimp. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.748837 (2021).
Google Scholar
Fuller, P. L. et al. Invasion of Asian tiger shrimp, Penaeus monodon Fabricius, 1798, in the western north Atlantic and Gulf of Mexico. Aquat. Invasions 9, 59–70 (2014).
Google Scholar
Lewis, E. & Wallace, D. Program developed for CO2 system calculations (Environmental System Science Data Infrastructure for a Virtual Ecosystem, 1998).
Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A Oceanogr. Res. Pap. 34, 1733–1743 (1987).
Google Scholar
AOAC. Method 991.42 & 993.19. Official methods of analysis (16th ed.). Washington, DC: Association of Official Analytical Chemists (1995).
Motoh, H. Biology and ecology of Penaeus monodon. Iloilo City, Philippines. Aquaculture Department, Southeast Asian Fisheries Development Center (1985).
Mayor, D. J., Matthews, C., Cook, K., Zuur, A. F. & Hay, S. CO2-induced acidification affects hatching success in Calanus finmarchicus. Mar. Ecol. Prog. Ser. 350, 91–97 (2007).
Source: Ecology - nature.com