in

Tropical cyclones shape mangrove productivity gradients in the Indian subcontinent

  • 1.

    Kossin, J. P., Knapp, K. R., Olander, T. L. & Velden, C. S. Global increase in major tropical cyclone exceedance probability over the past four decades. Atmos. Planet. Sci. 117, (2020).

  • 2.

    Smith, T. J. et al. Cumulative impacts of hurricanes on florida mangrove ecosystems: sediment deposition, storm surges and land crabs of corcovado national park view project hydrologic response to increased water management capability at the great dismal swamp National Wildl. Wetlands https://doi.org/10.1672/08-40.1 (2009).

    Article 

    Google Scholar 

  • 3.

    Kumar, S., Lal, P. & Kumar, A. Turbulence of tropical cyclone ‘Fani’ in the Bay of Bengal and Indian subcontinent. Nat. Hazards 103, 1613–1622 (2020).

    Article 

    Google Scholar 

  • 4.

    Jayanta, B. South Bengal ravaged by Cyclone Amphan. DownToEarth (2020).

  • 5.

    Castañeda-Moya, E. et al. Hurricanes fertilize mangrove forests in the Gulf of Mexico (Florida Everglades, USA). Proc. Natl. Acad. Sci. U. S. A. 117, 4831–4841 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Lovelock, C. E. Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems 11, 342–354 (2008).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Alongi, D. M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 76, 1–13 (2008).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Lovelock, C. E., Ruess, R. W. & Feller, I. C. Co2 efflux from cleared mangrove peat. PLoS ONE 6, 1–4 (2011).

    Article 
    CAS 

    Google Scholar 

  • 10.

    FSI. India State of Forest Report, Ministry of Environment, Forest & Climate Change. (2019).

  • 11.

    Mandal, R. N. & Naskar, K. R. Diversity and classification of Indian mangroves: A review. Trop. Ecol. 49, 131–146 (2008).

    Google Scholar 

  • 12.

    Ragavan, P. et al. A review of the mangrove floristics of India. Taiwania 61, 224–242 (2016).

    Google Scholar 

  • 13.

    Blasco, F., Janodet, E. & Bellan, M. F. Natural Hazards and Mangroves in the Bay of Bengal. Source: Journal of Coastal Research (1994).

  • 14.

    Kathiresan, K. & Rajendran, N. Coastal mangrove forests mitigated tsunami. Estuar. Coast. Shelf Sci. 65, 601–606 (2005).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Suresh, H.S., Mangrove area assessment in India: Implications of loss of mangroves. J. Earth Sci. Clim. Change 06, (2015).

  • 16.

    Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40, 81–251 (2001).

    Article 

    Google Scholar 

  • 17.

    Das, S. & Vincent, J. R. Mangroves protected villages and reduced death toll during Indian super cyclone. Proc. Natl. Acad. Sci. U. S. A. 106, 7357–7360 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Rathore, L. S., Mohapatra, M. & Geetha, B. Collaborative mechanism for tropical cyclone monitoring and prediction over north Indian ocean. in Tropical Cyclone Activity over the North Indian Ocean 3–27 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-40576-6_1

  • 19.

    Imbert, D. Hurricane disturbance and forest dynamics in east Caribbean mangroves. Ecosphere 9, (2018).

  • 20.

    Silva Pedro, M., Rammer, W. & Seidl, R. A disturbance-induced increase in tree species diversity facilitates forest productivity. Landsc. Ecol. 31, 989–1004 (2016).

    Article 

    Google Scholar 

  • 21.

    Matayaya, G., Wuta, M. & Nyamadzawo, G. Effects of different disturbance regimes on grass and herbaceous plant diversity and biomass in Zimbabwean dambo systems. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 13, 181–190 (2017).

    Article 

    Google Scholar 

  • 22.

    Galeano, A., Urrego, L. E., Botero, V. & Bernal, G. Mangrove resilience to climate extreme events in a Colombian Caribbean Island. Wetl. Ecol. Manag. 25, 743–760 (2017).

    Article 

    Google Scholar 

  • 23.

    Capdeville, C. et al. Mangrove facies drives resistance and resilience of sediment microbes exposed to anthropic disturbance. Front. Microbiol. 9, 10 (2019).

    Article 

    Google Scholar 

  • 24.

    Banerjee, K. et al. High blue carbon stock in mangrove forests of Eastern India. Trop. Ecol. 61, 150–167 (2020).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Murthy, T. V. R. Biophysical characterisation and site suitability analysis for Indian mangroves. (2019).

  • 26.

    Whelan, K. R., Smith, T. J., Anderson, G. H., & Ouellette, M. L. Hurricane Wilma’s impact on overall soil elevation and zones within the soil profile in a mangrove forest. Wetlands 29, 16–23 (2009).

    Article 

    Google Scholar 

  • 27.

    Smoak, J. M., Breithaupt, J. L., Smith, T. J. & Sanders, C. J. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park. CATENA 104, 58–66 (2013).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Bala Krishna Prasad, M. Nutrient stoichiometry and eutrophication in Indian mangroves. Environ. Earth Sci. 67, 293–299 (2012).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Reddy, Y. et al. Assessment of bioavailable nitrogen and phosphorus content in the sediments of Indian mangroves. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-021-13638-7 (2021).

    Article 

    Google Scholar 

  • 30.

    Bala Krishna Prasad, M., Ramanathan, A. L., Alongi, D. M. & Kannan, L. Seasonal variations and decadal trends in concentrations of dissolved inorganic nutrients in Pichavaram mangrove waters Southeast India. Bull. Mar. Sci. 79, 287–300 (2006).

    Google Scholar 

  • 31.

    Nandy Datta, P. & Ghose, M. Photosynthesis and water-use efficiency of some mangroves from Sundarbans. India. J. Plant Biol. 44, 213–219 (2001).

    Article 

    Google Scholar 

  • 32.

    Ball, M. C. & Critchley, C. Photosynthetic responses to irradiance by the grey mangrove, avicennia marina, grown under different light regimes. Plant Physiol. 70, 1101–1106 (1982).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Cheeseman, J. M. et al. The analysis of photosynthetic performance in leaves under field conditions: A case study using Bruguiera mangroves. Photosynth. Res. 29, 11–22 (1991).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Rajkumar, R., Shaijumon, C. S., Gopakumar, B. & Gopalakrishnan, D. Extreme rainfall and drought events in Tamil Nadu India. Clim. Res. 80, 175–188 (2020).

    Article 

    Google Scholar 

  • 35.

    Lakshmi, S., Nivethaa, E. A. K., Ibrahim, S. N. A., Ramachandran, A. & Palanivelu, K. Prediction of future extremes during the Northeast Monsoon in the coastal districts of Tamil Nadu State in India Based on ENSO. Pure Appl. Geophys. https://doi.org/10.1007/s00024-021-02768-1 (2021).

    Article 

    Google Scholar 

  • 36.

    Aung, T. T., Mochida, Y. & Than, M. M. Prediction of recovery pathways of cyclone-disturbed mangroves in the mega delta of Myanmar. For. Ecol. Manage. 293, 103–113 (2013).

    Article 

    Google Scholar 

  • 37.

    Bai, J. et al. Mangrove diversity enhances plant biomass production and carbon storage in Hainan island China. Funct. Ecol. 35, 774–786 (2021).

    Article 

    Google Scholar 

  • 38.

    Rasquinha, D. N. & Mishra, D. R. Impact of wood harvesting on mangrove forest structure, composition and biomass dynamics in India. Estuar. Coast. Shelf Sci. 248, 106974 (2021).

    Article 

    Google Scholar 

  • 39.

    Ranjan, R. K., Ramanathan, A. L., Chauhan, R. & Singh, G. Phosphorus fractionation in sediments of the Pichavaram mangrove ecosystem, south-eastern coast of India. Environ. Earth Sci. 62, 1779–1787 (2011).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Prasad, A. M., Iverson, L. R. & Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 9, 181–199 (2006).

    Article 

    Google Scholar 

  • 41.

    Prasad, M. B. K., Singh, G. & Ramanathan, A. L. Nutrient biogeochemistry and net ecosystem metabolism in a tropical coastal mangrove ecosystem. Indian J. Geo-Marine Sci. 45, 1499–1511 (2016).

    Google Scholar 

  • 42.

    Lovelock, C. E., Friess, D. A. & Krauss, K. W. the vulnerability of Indo-Paci & c mangrove forests to sea-level rise. (2015).

  • 43.

    Ward, R. D., Friess, D. A., Day, R. H. & Mackenzie, R. A. Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst. Heal. Sustain. 2, e01211 (2016).

    Article 

    Google Scholar 

  • 44.

    Banerjee, K., Gatti, R. C. & Mitra, A. Climate change-induced salinity variation impacts on a stenoecious mangrove species in the Indian Sundarbans. Ambio 46, 492–499 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Ranasinghe, R., Duong, T. M., Uhlenbrook, S., Roelvink, D. & Stive, M. Climate-change impact assessment for inlet-interrupted coastlines. Nat. Clim. Chang. 3, 83–87 (2013).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Eslami-Andargoli, L., Dale, P., Sipe, N. & Chaseling, J. Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland Australia. Estuar. Coast. Shelf Sci. 85, 292–298 (2009).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Gilman, E., Ellison, J. & Coleman, R. Assessment of mangrove response to projected relative sea-level rise and recent historical reconstruction of shoreline position. Environ. Monit. Assess. 124, 105–130 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Field, C. D. Impact of expected climate change on mangroves. in Asia-Pacific Symposium on Mangrove Ecosystems 75–81 (Springer Netherlands, 1995). https://doi.org/10.1007/978-94-011-0289-6_10

  • 49.

    Duke, N., Ball, M. & Ellison, J. Factors influencing biodiversity and distributional gradients in mangroves. Glob. Ecol. Biogeogr. Lett. 7, 27–47 (1998).

    Article 

    Google Scholar 

  • 50.

    Smith, T. J. & Duke, N. C. Physical determinants of inter-estuary variation in mangrove species richness around the tropical coastline of Australia. J. Biogeogr. 14, 9 (1987).

    Article 

    Google Scholar 

  • 51.

    Van Lavieren, H., Spalding, M., Alongi, D. M., Kainuma, M., Clüsener-Godt, M., Adeel, Z. Policy brief: Securing the future of mangroves. (2012).

  • 52.

    Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO 2. Front. Ecol. Environ. 9, 552–560 (2011).

    Article 

    Google Scholar 

  • 53.

    Siikamäki, J., Sanchirico, J. N. & Jardine, S. L. Global economic potential for reducing carbon dioxide emissions from mangrove loss. https://doi.org/10.1073/pnas.1200519109

  • 54.

    Barr, J. G., Fuentes, J. D., Engel, V. & Zieman, J. C. Physiological responses of red mangroves to the climate in the Florida Everglades. J. Geophys. Res. Biogeosciences. 114, 1-13 (2009).

    Article 
    CAS 

    Google Scholar 

  • 55.

    Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J. & Neumann, C. J. The international best track archive for climate stewardship (IBTrACS). Bull. Am. Meteorol. Soc. 91, 363–376 (2010).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Tao, J. et al. A comparison between the MODIS product (MOD17A2) and a tide-robust empirical GPP model evaluated in a Georgia Wetland. Remote Sens. 10, 1831 (2018).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Hutley, L. B. et al. Impacts of an extreme cyclone event on landscape-scale savanna fire, productivity and greenhouse gas emissions. Environ. Res. Lett. 8, 045023 (2013).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Sannigrahi, S., Sen, S. & Paul, S. Estimation of Mangrove Net Primary Production and Carbon Sequestration service using Light Use Efficiency model in the Sunderban Biosphere region, India. Geophysi. Res. Abstracts 18, (2016).


  • Source: Ecology - nature.com

    Phenotypic plasticity of fungal traits in response to moisture and temperature

    Body size dependent dispersal influences stability in heterogeneous metacommunities