Kossin, J. P., Knapp, K. R., Olander, T. L. & Velden, C. S. Global increase in major tropical cyclone exceedance probability over the past four decades. Atmos. Planet. Sci. 117, (2020).
Smith, T. J. et al. Cumulative impacts of hurricanes on florida mangrove ecosystems: sediment deposition, storm surges and land crabs of corcovado national park view project hydrologic response to increased water management capability at the great dismal swamp National Wildl. Wetlands https://doi.org/10.1672/08-40.1 (2009).
Google Scholar
Kumar, S., Lal, P. & Kumar, A. Turbulence of tropical cyclone ‘Fani’ in the Bay of Bengal and Indian subcontinent. Nat. Hazards 103, 1613–1622 (2020).
Google Scholar
Jayanta, B. South Bengal ravaged by Cyclone Amphan. DownToEarth (2020).
Castañeda-Moya, E. et al. Hurricanes fertilize mangrove forests in the Gulf of Mexico (Florida Everglades, USA). Proc. Natl. Acad. Sci. U. S. A. 117, 4831–4841 (2020).
Google Scholar
Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).
Google Scholar
Lovelock, C. E. Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems 11, 342–354 (2008).
Google Scholar
Alongi, D. M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 76, 1–13 (2008).
Google Scholar
Lovelock, C. E., Ruess, R. W. & Feller, I. C. Co2 efflux from cleared mangrove peat. PLoS ONE 6, 1–4 (2011).
Google Scholar
FSI. India State of Forest Report, Ministry of Environment, Forest & Climate Change. (2019).
Mandal, R. N. & Naskar, K. R. Diversity and classification of Indian mangroves: A review. Trop. Ecol. 49, 131–146 (2008).
Ragavan, P. et al. A review of the mangrove floristics of India. Taiwania 61, 224–242 (2016).
Blasco, F., Janodet, E. & Bellan, M. F. Natural Hazards and Mangroves in the Bay of Bengal. Source: Journal of Coastal Research (1994).
Kathiresan, K. & Rajendran, N. Coastal mangrove forests mitigated tsunami. Estuar. Coast. Shelf Sci. 65, 601–606 (2005).
Google Scholar
Suresh, H.S., Mangrove area assessment in India: Implications of loss of mangroves. J. Earth Sci. Clim. Change 06, (2015).
Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40, 81–251 (2001).
Google Scholar
Das, S. & Vincent, J. R. Mangroves protected villages and reduced death toll during Indian super cyclone. Proc. Natl. Acad. Sci. U. S. A. 106, 7357–7360 (2009).
Google Scholar
Rathore, L. S., Mohapatra, M. & Geetha, B. Collaborative mechanism for tropical cyclone monitoring and prediction over north Indian ocean. in Tropical Cyclone Activity over the North Indian Ocean 3–27 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-40576-6_1
Imbert, D. Hurricane disturbance and forest dynamics in east Caribbean mangroves. Ecosphere 9, (2018).
Silva Pedro, M., Rammer, W. & Seidl, R. A disturbance-induced increase in tree species diversity facilitates forest productivity. Landsc. Ecol. 31, 989–1004 (2016).
Google Scholar
Matayaya, G., Wuta, M. & Nyamadzawo, G. Effects of different disturbance regimes on grass and herbaceous plant diversity and biomass in Zimbabwean dambo systems. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 13, 181–190 (2017).
Google Scholar
Galeano, A., Urrego, L. E., Botero, V. & Bernal, G. Mangrove resilience to climate extreme events in a Colombian Caribbean Island. Wetl. Ecol. Manag. 25, 743–760 (2017).
Google Scholar
Capdeville, C. et al. Mangrove facies drives resistance and resilience of sediment microbes exposed to anthropic disturbance. Front. Microbiol. 9, 10 (2019).
Google Scholar
Banerjee, K. et al. High blue carbon stock in mangrove forests of Eastern India. Trop. Ecol. 61, 150–167 (2020).
Google Scholar
Murthy, T. V. R. Biophysical characterisation and site suitability analysis for Indian mangroves. (2019).
Whelan, K. R., Smith, T. J., Anderson, G. H., & Ouellette, M. L. Hurricane Wilma’s impact on overall soil elevation and zones within the soil profile in a mangrove forest. Wetlands 29, 16–23 (2009).
Google Scholar
Smoak, J. M., Breithaupt, J. L., Smith, T. J. & Sanders, C. J. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park. CATENA 104, 58–66 (2013).
Google Scholar
Bala Krishna Prasad, M. Nutrient stoichiometry and eutrophication in Indian mangroves. Environ. Earth Sci. 67, 293–299 (2012).
Google Scholar
Reddy, Y. et al. Assessment of bioavailable nitrogen and phosphorus content in the sediments of Indian mangroves. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-021-13638-7 (2021).
Google Scholar
Bala Krishna Prasad, M., Ramanathan, A. L., Alongi, D. M. & Kannan, L. Seasonal variations and decadal trends in concentrations of dissolved inorganic nutrients in Pichavaram mangrove waters Southeast India. Bull. Mar. Sci. 79, 287–300 (2006).
Nandy Datta, P. & Ghose, M. Photosynthesis and water-use efficiency of some mangroves from Sundarbans. India. J. Plant Biol. 44, 213–219 (2001).
Google Scholar
Ball, M. C. & Critchley, C. Photosynthetic responses to irradiance by the grey mangrove, avicennia marina, grown under different light regimes. Plant Physiol. 70, 1101–1106 (1982).
Google Scholar
Cheeseman, J. M. et al. The analysis of photosynthetic performance in leaves under field conditions: A case study using Bruguiera mangroves. Photosynth. Res. 29, 11–22 (1991).
Google Scholar
Rajkumar, R., Shaijumon, C. S., Gopakumar, B. & Gopalakrishnan, D. Extreme rainfall and drought events in Tamil Nadu India. Clim. Res. 80, 175–188 (2020).
Google Scholar
Lakshmi, S., Nivethaa, E. A. K., Ibrahim, S. N. A., Ramachandran, A. & Palanivelu, K. Prediction of future extremes during the Northeast Monsoon in the coastal districts of Tamil Nadu State in India Based on ENSO. Pure Appl. Geophys. https://doi.org/10.1007/s00024-021-02768-1 (2021).
Google Scholar
Aung, T. T., Mochida, Y. & Than, M. M. Prediction of recovery pathways of cyclone-disturbed mangroves in the mega delta of Myanmar. For. Ecol. Manage. 293, 103–113 (2013).
Google Scholar
Bai, J. et al. Mangrove diversity enhances plant biomass production and carbon storage in Hainan island China. Funct. Ecol. 35, 774–786 (2021).
Google Scholar
Rasquinha, D. N. & Mishra, D. R. Impact of wood harvesting on mangrove forest structure, composition and biomass dynamics in India. Estuar. Coast. Shelf Sci. 248, 106974 (2021).
Google Scholar
Ranjan, R. K., Ramanathan, A. L., Chauhan, R. & Singh, G. Phosphorus fractionation in sediments of the Pichavaram mangrove ecosystem, south-eastern coast of India. Environ. Earth Sci. 62, 1779–1787 (2011).
Google Scholar
Prasad, A. M., Iverson, L. R. & Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 9, 181–199 (2006).
Google Scholar
Prasad, M. B. K., Singh, G. & Ramanathan, A. L. Nutrient biogeochemistry and net ecosystem metabolism in a tropical coastal mangrove ecosystem. Indian J. Geo-Marine Sci. 45, 1499–1511 (2016).
Lovelock, C. E., Friess, D. A. & Krauss, K. W. the vulnerability of Indo-Paci & c mangrove forests to sea-level rise. (2015).
Ward, R. D., Friess, D. A., Day, R. H. & Mackenzie, R. A. Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst. Heal. Sustain. 2, e01211 (2016).
Google Scholar
Banerjee, K., Gatti, R. C. & Mitra, A. Climate change-induced salinity variation impacts on a stenoecious mangrove species in the Indian Sundarbans. Ambio 46, 492–499 (2017).
Google Scholar
Ranasinghe, R., Duong, T. M., Uhlenbrook, S., Roelvink, D. & Stive, M. Climate-change impact assessment for inlet-interrupted coastlines. Nat. Clim. Chang. 3, 83–87 (2013).
Google Scholar
Eslami-Andargoli, L., Dale, P., Sipe, N. & Chaseling, J. Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland Australia. Estuar. Coast. Shelf Sci. 85, 292–298 (2009).
Google Scholar
Gilman, E., Ellison, J. & Coleman, R. Assessment of mangrove response to projected relative sea-level rise and recent historical reconstruction of shoreline position. Environ. Monit. Assess. 124, 105–130 (2007).
Google Scholar
Field, C. D. Impact of expected climate change on mangroves. in Asia-Pacific Symposium on Mangrove Ecosystems 75–81 (Springer Netherlands, 1995). https://doi.org/10.1007/978-94-011-0289-6_10
Duke, N., Ball, M. & Ellison, J. Factors influencing biodiversity and distributional gradients in mangroves. Glob. Ecol. Biogeogr. Lett. 7, 27–47 (1998).
Google Scholar
Smith, T. J. & Duke, N. C. Physical determinants of inter-estuary variation in mangrove species richness around the tropical coastline of Australia. J. Biogeogr. 14, 9 (1987).
Google Scholar
Van Lavieren, H., Spalding, M., Alongi, D. M., Kainuma, M., Clüsener-Godt, M., Adeel, Z. Policy brief: Securing the future of mangroves. (2012).
Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO 2. Front. Ecol. Environ. 9, 552–560 (2011).
Google Scholar
Siikamäki, J., Sanchirico, J. N. & Jardine, S. L. Global economic potential for reducing carbon dioxide emissions from mangrove loss. https://doi.org/10.1073/pnas.1200519109
Barr, J. G., Fuentes, J. D., Engel, V. & Zieman, J. C. Physiological responses of red mangroves to the climate in the Florida Everglades. J. Geophys. Res. Biogeosciences. 114, 1-13 (2009).
Google Scholar
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J. & Neumann, C. J. The international best track archive for climate stewardship (IBTrACS). Bull. Am. Meteorol. Soc. 91, 363–376 (2010).
Google Scholar
Tao, J. et al. A comparison between the MODIS product (MOD17A2) and a tide-robust empirical GPP model evaluated in a Georgia Wetland. Remote Sens. 10, 1831 (2018).
Google Scholar
Hutley, L. B. et al. Impacts of an extreme cyclone event on landscape-scale savanna fire, productivity and greenhouse gas emissions. Environ. Res. Lett. 8, 045023 (2013).
Google Scholar
Sannigrahi, S., Sen, S. & Paul, S. Estimation of Mangrove Net Primary Production and Carbon Sequestration service using Light Use Efficiency model in the Sunderban Biosphere region, India. Geophysi. Res. Abstracts 18, (2016).
Source: Ecology - nature.com