Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).
Google Scholar
Maschinski, J. et al. Sinking ships: Conservation options for endemic taxa threatened by sea level rise. Clim. Change 107, 147–167 (2011).
Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
Google Scholar
Heaney, L. R., Balete, D. S. & Rickart, E. A. Models of oceanic island biogeography: Changing perspectives on biodiversity dynamics in archipelagoes. Front. Biogeogr. 5, 249–257 (2013).
Google Scholar
Keppel, G., Lowe, A. J. & Possingham, H. P. Changing perspectives on the biogeography of the tropical South Pacific: Influences of dispersal, vicariance and extinction. J. Biogeogr. 36, 1035–1054 (2009).
Google Scholar
Laurance, W. F. Beyond Island biogeography theory. In The Theory of Island Biogeography Revisited (eds Losos, jB. & Ricklefs, R. E.) 214–237 (Princeton University Press, 2010).
Cheesman, L. E. Biogeographical significance of Aneityum Island, New Hebrides. Nature 180, 903–904 (1957).
Google Scholar
Cox, B. T. M. & Burns, K. C. Convergent evolution of gigantism in the flora of an isolated archipelago. Evol. Ecol. 31, 741–752 (2017).
Google Scholar
Hamilton, A. M., Klein, E. R. & Austin, C. C. Biogeographic breaks in Vanuatu, a nascent oceanic archipelago. Pac. Sci. 64, 149–159 (2010).
Google Scholar
Coleman, P. J. Geology of the Solomon and New Hebrides islands, as part of the Melanesian re-entrant, Southwest Pacific. Pac. Sci. 24, 289–314 (1970).
Valente, L. et al. A simple dynamic model explains the diversity of island birds worldwide. Nature 579, 92–96 (2020).
Google Scholar
Keppel, G., Buckley, Y. M. & Possingham, H. P. Drivers of lowland rain forest community assembly, species diversity and forest structure on islands in the tropical South Pacific. Ecology 98, 87–95 (2010).
Google Scholar
Cheng, L. Insects in marine environments. Marine Insects 1, 1–4 (1976).
Ballantyne, L. A. & Buck, E. Taxonomy and behavior of Luciola (Luciola) aphrogeneia, a new surf firefly from Papua New Guinea. Trans. Am. Entomol. Soc. 105, 117–137 (1979).
Doyen, J. T. Marine beetles (Coleoptera excluding Staphylinidae). In Marine Insects (ed. Cheng, L.) 497–519 (American Elsevier, 1976).
Topp, W. & Ring, R. A. Adaptations of Coleoptera to the marine environment. II. Observations on rove beetles (Staphylinidae) from rocky shores. Can. J. Zool. 66, 2469–2474 (1988).
Google Scholar
Lloyd, J. E. Fireflies (Coleoptera: Lampyridae). In Encyclopedia of Entomology 429–1452 (Springer Dordrecht, 2008).
McDermott, F. A. Photuris bethaniensis, a new Lampyrid firefly. Proc. U. S. Natl. Mus. 103, 35–37 (1953).
Google Scholar
Vaz, S. et al. On the intertidal firefly genus Micronaspis Green, 1948, with a new species and a phylogeny of Cratomorphini based on adult and larval traits (Coleoptera: Lampyridae). Zool. Anz. 292, 64–91 (2021).
Google Scholar
Ballantyne, L. A. & Lambkin, C. Systematics of Indo-Pacific fireflies with a redefinition of Australasian Atyphella Olliff, Madagascan Photurolociola Pic, and description of seven new genera from the Luciolinae (Coleoptera: Lampyridae). Zootaxa 1997, 1–188 (2009).
Google Scholar
Ballantyne, L. A. et al. The Luciolinae of SE Asia and the Australopacific region: A revisionary checklist (Coleoptera: Lampyridae) including description of three new genera and 13 new species. Zootaxa 4687, 1–174 (2019).
Google Scholar
Saxton, N. A., Powell, G. S., Martin, G. J. & Bybee, S. M. Two new species of coastal Atyphella Ollliff (Lampyridae: Luciolinae). Zootaxa 4722, 270–276 (2020).
Google Scholar
Gassner, P. et al. Marine Atlas. Maximizing Benefits for Vanuatu. https://grid.cld.bz/Marine-Atlas-Maximizing-Benefits-for-Vanuatu1/10/ (2019).
Saxton, N. A., Powell, G. S., Serrano, S. J., Monson, A. K. & Bybee, S. M. Natural history and ecological niche modelling of coastal Atyphella Olliff larvae (Lampyridae: Luciolinae) in Vanuatu. J. Nat. Hist. 53, 2271–2280 (2019).
Google Scholar
Rhoden, C. M., Peterman, W. E. & Taylor, C. A. Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ 5, e3632 (2017).
Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Google Scholar
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).
Google Scholar
Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).
Google Scholar
Stas, M. et al. An evaluation of species distribution models to estimate tree diversity at genus level in a heterogeneous urban-rural landscape. Landsc. Urban Plan. 198, 103770 (2020).
Google Scholar
Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785 (2006).
Google Scholar
Hernandez, P. A. et al. Predicting species distributions in poorly-studied landscapes. Biodivers. Conserv. 17, 1353–1366 (2008).
Google Scholar
Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).
Google Scholar
Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
Google Scholar
Silva, D. P., Aguiar, A. G. & Simião-Ferreira, J. Assessing the distribution and conservation status of a long-horned beetle with species distribution models. J. Insect Conserv. 20, 611–620 (2016).
Google Scholar
Cardoso, P., Erwin, T. L., Borges, P. A. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).
Google Scholar
Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).
Google Scholar
Lomolino, M. V. Conservation biogeography. In Frontiers of Biogeography: new directions in the geography of nature (eds. Lomolino, M. V. & Heaney, L. R.) 293–296 (Sinauer Associates, Sunderland, Massachusetts, 2004).
Whittaker, R. J. et al. Conservation biogeography: Assessment and prospect. Divers. Distrib. 11, 3–23 (2005).
Google Scholar
Cui, S., Luo, X., Li, C., Hu, H. & Jiang, Z. Predicting the potential distribution of white-lipped deer using the MaxEnt model. Biodivers. Sci. 26, 171 (2018).
Google Scholar
Moreno, R., Zamora, R., Molina, J. R., Vasquez, A. & Herrera, M. Á. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent). Ecol. Inform. 6, 364–370 (2011).
Google Scholar
Raman, S., Shameer, T. T., Sanil, R., Usha, P. & Kumar, S. Protrusive influence of climate change on the ecological niche of endemic brown mongoose (Herpestes fuscus fuscus): A MaxEnt approach from Western Ghats, India. Model. Earth Syst. Environ. 6, 1795–1806 (2020).
Google Scholar
Abdelaal, M., Fois, M., Fenu, G. & Bacchetta, G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép, Egypt. Ecol. Inform. 50, 68–75 (2019).
Google Scholar
Kumar, S. & Stohlgren, T. J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J. Ecol. Nat. 1, 094–098 (2009).
Yang, X. Q., Kushwaha, S. P. S., Saran, S., Xu, J. & Roy, P. S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. Lesser Himalayan foothills. Ecol. Eng. 51, 83–87 (2013).
Google Scholar
New, T. R. Conserving narrow range endemic insects in the face of climate change: Options for some Australian butterflies. J. Insect Conserv. 12, 585–589 (2008).
Google Scholar
Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 20, 1–9 (2014).
Google Scholar
Hijmans, R. J., Cameron, S. & Parra, J. WorldClim, Version 1.4 (University of California, 2005).
Hijmans, R. J. et al. DIVA-GIS. Version, 7.5. A Geographic Information System for the Analysis of Species Distribution Data. http://www.diva-gis.org (2012).
Phillips, S. J., Dudik, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the 21st International Conference on Machine Learning 655–662 (2004).
Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
Google Scholar
Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).
Google Scholar
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project (2020).
Phillips, S. J. A brief tutorial on Maxent. AT&T Res. 190, 231–259 (2005).
RStudio Team RStudio: Integrated Development Environment for R. RStudio, PBC. http://www.rstudio.com/ (2020).
Zizka, A., Antonelli, A. & Silvestro, D. Sampbias: Evaluating geographic sampling bias in biological collections. Ecography 44, 25–32 (2020).
Google Scholar
Almeida, M. C., Cortes, L. G. & De Marco Junior, P. New records and a niche model for the distribution of two Neotropical damselflies: Schistolobos boliviensis and Tuberculobasis inversa (Odonata: Coenagrionidae). Insect Conserv. Divers. 3, 252–256 (2010).
Google Scholar
De Siqueira, M. F., Durigan, G., de Marco Júnior, P. & Peterson, A. T. Something from nothing: Using landscape similarity and ecological niche modeling to find rare plant species. J. Nat. Conserv. 17, 25–32 (2009).
Google Scholar
Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).
Google Scholar
McCune, J. L. Species distribution models predict rare species occurrences despite significant effects of landscape context. J. Appl. Ecol. 53, 1871–1879 (2016).
Google Scholar
Rinnhofer, L. J. et al. Iterative species distribution modelling and ground validation in endemism research: An Alpine jumping bristletail example. Biodiversity 21, 2845–2863 (2012).
Peterman, W. E., Crawford, J. A. & Kuhns, A. R. Using species distribution and occupancy modeling to guide survey efforts and assess species status. J. Nat. Conserv. 21, 114–121 (2013).
Google Scholar
Searcy, C. A. & Shaffer, H. B. Field validation supports novel niche modeling strategies in a cryptic endangered amphibian. Ecography 37, 983–992 (2014).
Google Scholar
Virzi, T., Lockwood, J. L., Lathrop, R. G., Grodsky, S. M. & Drake, D. Predicting American Oystercatcher (Haematopus palliatus) breeding distribution in an urbanized coastal ecosystem using maximum entropy modeling. Waterbirds 40, 104–122 (2017).
Google Scholar
Greaves, G. J., Mathieu, R. & Seddon, P. J. Predictive modelling and ground validation of the spatial distribution of the New Zealand long-tailed bat (Chalinolobus tuberculatus). Biol. Conserv. 132, 211–221 (2006).
Google Scholar
Raxworthy, C. J. et al. Predicting distributions of known and unknown reptile species in Madagascar. Nature 426, 837–841 (2003).
Google Scholar
Thorn, J. S., Nijman, V., Smith, D. & Nekaris, K. A. I. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Divers. Distrib. 15, 289–298 (2009).
Google Scholar
Faith, D. et al. Bridging the biodiversity data gaps: Recommendations to meet users’ data needs. Biodivers. Inform. 8, 41–58 (2013).
Google Scholar
Pyke, G. H. & Ehrlich, P. R. Biological collections and ecological/environmental research: A review, some observations and a look to the future. Biology 85, 247–266 (2010).
Boakes, E. H. et al. Distorted views of biodiversity: Spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).
Google Scholar
Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379 (2013).
Google Scholar
Fourcade, Y., Engler, J. O., Rödder, D. & Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS ONE 9, e97122 (2014).
Google Scholar
National Integrated Coastal Management Framework. National Integrated Coastal Management Framework and Implementation Strategy for Vanuatu. https://extwprlegs1.fao.org/docs/pdf/van171039.pdf (2010).
Department of Environmental and Protection and Conservation. Coastal Development. https://environment.gov.vu/images/EIA/EIA_G%20Coastal%20development.pdf (2017).
Source: Ecology - nature.com