in

Validating species distribution models to illuminate coastal fireflies in the South Pacific (Coleoptera: Lampyridae)

  • 1.

    Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).

    Article 

    Google Scholar 

  • 2.

    Maschinski, J. et al. Sinking ships: Conservation options for endemic taxa threatened by sea level rise. Clim. Change 107, 147–167 (2011).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Heaney, L. R., Balete, D. S. & Rickart, E. A. Models of oceanic island biogeography: Changing perspectives on biodiversity dynamics in archipelagoes. Front. Biogeogr. 5, 249–257 (2013).

    Article 

    Google Scholar 

  • 5.

    Keppel, G., Lowe, A. J. & Possingham, H. P. Changing perspectives on the biogeography of the tropical South Pacific: Influences of dispersal, vicariance and extinction. J. Biogeogr. 36, 1035–1054 (2009).

    Article 

    Google Scholar 

  • 6.

    Laurance, W. F. Beyond Island biogeography theory. In The Theory of Island Biogeography Revisited (eds Losos, jB. & Ricklefs, R. E.) 214–237 (Princeton University Press, 2010).

    Google Scholar 

  • 7.

    Cheesman, L. E. Biogeographical significance of Aneityum Island, New Hebrides. Nature 180, 903–904 (1957).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Cox, B. T. M. & Burns, K. C. Convergent evolution of gigantism in the flora of an isolated archipelago. Evol. Ecol. 31, 741–752 (2017).

    Article 

    Google Scholar 

  • 9.

    Hamilton, A. M., Klein, E. R. & Austin, C. C. Biogeographic breaks in Vanuatu, a nascent oceanic archipelago. Pac. Sci. 64, 149–159 (2010).

    Article 

    Google Scholar 

  • 10.

    Coleman, P. J. Geology of the Solomon and New Hebrides islands, as part of the Melanesian re-entrant, Southwest Pacific. Pac. Sci. 24, 289–314 (1970).

    Google Scholar 

  • 11.

    Valente, L. et al. A simple dynamic model explains the diversity of island birds worldwide. Nature 579, 92–96 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Keppel, G., Buckley, Y. M. & Possingham, H. P. Drivers of lowland rain forest community assembly, species diversity and forest structure on islands in the tropical South Pacific. Ecology 98, 87–95 (2010).

    Article 

    Google Scholar 

  • 13.

    Cheng, L. Insects in marine environments. Marine Insects 1, 1–4 (1976).

    Google Scholar 

  • 14.

    Ballantyne, L. A. & Buck, E. Taxonomy and behavior of Luciola (Luciola) aphrogeneia, a new surf firefly from Papua New Guinea. Trans. Am. Entomol. Soc. 105, 117–137 (1979).

    Google Scholar 

  • 15.

    Doyen, J. T. Marine beetles (Coleoptera excluding Staphylinidae). In Marine Insects (ed. Cheng, L.) 497–519 (American Elsevier, 1976).

  • 16.

    Topp, W. & Ring, R. A. Adaptations of Coleoptera to the marine environment. II. Observations on rove beetles (Staphylinidae) from rocky shores. Can. J. Zool. 66, 2469–2474 (1988).

    Article 

    Google Scholar 

  • 17.

    Lloyd, J. E. Fireflies (Coleoptera: Lampyridae). In Encyclopedia of Entomology 429–1452 (Springer Dordrecht, 2008).

  • 18.

    McDermott, F. A. Photuris bethaniensis, a new Lampyrid firefly. Proc. U. S. Natl. Mus. 103, 35–37 (1953).

    Article 

    Google Scholar 

  • 19.

    Vaz, S. et al. On the intertidal firefly genus Micronaspis Green, 1948, with a new species and a phylogeny of Cratomorphini based on adult and larval traits (Coleoptera: Lampyridae). Zool. Anz. 292, 64–91 (2021).

    Article 

    Google Scholar 

  • 20.

    Ballantyne, L. A. & Lambkin, C. Systematics of Indo-Pacific fireflies with a redefinition of Australasian Atyphella Olliff, Madagascan Photurolociola Pic, and description of seven new genera from the Luciolinae (Coleoptera: Lampyridae). Zootaxa 1997, 1–188 (2009).

    Article 

    Google Scholar 

  • 21.

    Ballantyne, L. A. et al. The Luciolinae of SE Asia and the Australopacific region: A revisionary checklist (Coleoptera: Lampyridae) including description of three new genera and 13 new species. Zootaxa 4687, 1–174 (2019).

    Article 

    Google Scholar 

  • 22.

    Saxton, N. A., Powell, G. S., Martin, G. J. & Bybee, S. M. Two new species of coastal Atyphella Ollliff (Lampyridae: Luciolinae). Zootaxa 4722, 270–276 (2020).

    Article 

    Google Scholar 

  • 23.

    Gassner, P. et al. Marine Atlas. Maximizing Benefits for Vanuatu. https://grid.cld.bz/Marine-Atlas-Maximizing-Benefits-for-Vanuatu1/10/ (2019).

  • 24.

    Saxton, N. A., Powell, G. S., Serrano, S. J., Monson, A. K. & Bybee, S. M. Natural history and ecological niche modelling of coastal Atyphella Olliff larvae (Lampyridae: Luciolinae) in Vanuatu. J. Nat. Hist. 53, 2271–2280 (2019).

    Article 

    Google Scholar 

  • 25.

    Rhoden, C. M., Peterman, W. E. & Taylor, C. A. Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ 5, e3632 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Article 

    Google Scholar 

  • 27.

    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).

    Article 

    Google Scholar 

  • 28.

    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).

    Article 

    Google Scholar 

  • 29.

    Stas, M. et al. An evaluation of species distribution models to estimate tree diversity at genus level in a heterogeneous urban-rural landscape. Landsc. Urban Plan. 198, 103770 (2020).

    Article 

    Google Scholar 

  • 30.

    Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785 (2006).

    Article 

    Google Scholar 

  • 31.

    Hernandez, P. A. et al. Predicting species distributions in poorly-studied landscapes. Biodivers. Conserv. 17, 1353–1366 (2008).

    Article 

    Google Scholar 

  • 32.

    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).

    Article 

    Google Scholar 

  • 33.

    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Silva, D. P., Aguiar, A. G. & Simião-Ferreira, J. Assessing the distribution and conservation status of a long-horned beetle with species distribution models. J. Insect Conserv. 20, 611–620 (2016).

    Article 

    Google Scholar 

  • 35.

    Cardoso, P., Erwin, T. L., Borges, P. A. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).

    Article 

    Google Scholar 

  • 36.

    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).

    Article 

    Google Scholar 

  • 37.

    Lomolino, M. V. Conservation biogeography. In Frontiers of Biogeography: new directions in the geography of nature (eds. Lomolino, M. V. & Heaney, L. R.) 293–296 (Sinauer Associates, Sunderland, Massachusetts, 2004).

  • 38.

    Whittaker, R. J. et al. Conservation biogeography: Assessment and prospect. Divers. Distrib. 11, 3–23 (2005).

    Article 

    Google Scholar 

  • 39.

    Cui, S., Luo, X., Li, C., Hu, H. & Jiang, Z. Predicting the potential distribution of white-lipped deer using the MaxEnt model. Biodivers. Sci. 26, 171 (2018).

    Article 

    Google Scholar 

  • 40.

    Moreno, R., Zamora, R., Molina, J. R., Vasquez, A. & Herrera, M. Á. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent). Ecol. Inform. 6, 364–370 (2011).

    Article 

    Google Scholar 

  • 41.

    Raman, S., Shameer, T. T., Sanil, R., Usha, P. & Kumar, S. Protrusive influence of climate change on the ecological niche of endemic brown mongoose (Herpestes fuscus fuscus): A MaxEnt approach from Western Ghats, India. Model. Earth Syst. Environ. 6, 1795–1806 (2020).

    Article 

    Google Scholar 

  • 42.

    Abdelaal, M., Fois, M., Fenu, G. & Bacchetta, G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép, Egypt. Ecol. Inform. 50, 68–75 (2019).

    Article 

    Google Scholar 

  • 43.

    Kumar, S. & Stohlgren, T. J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J. Ecol. Nat. 1, 094–098 (2009).

    Google Scholar 

  • 44.

    Yang, X. Q., Kushwaha, S. P. S., Saran, S., Xu, J. & Roy, P. S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. Lesser Himalayan foothills. Ecol. Eng. 51, 83–87 (2013).

    CAS 
    Article 

    Google Scholar 

  • 45.

    New, T. R. Conserving narrow range endemic insects in the face of climate change: Options for some Australian butterflies. J. Insect Conserv. 12, 585–589 (2008).

    Article 

    Google Scholar 

  • 46.

    Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 20, 1–9 (2014).

    Article 

    Google Scholar 

  • 47.

    Hijmans, R. J., Cameron, S. & Parra, J. WorldClim, Version 1.4 (University of California, 2005).

    Google Scholar 

  • 48.

    Hijmans, R. J. et al. DIVA-GIS. Version, 7.5. A Geographic Information System for the Analysis of Species Distribution Data. http://www.diva-gis.org (2012).

  • 49.

    Phillips, S. J., Dudik, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the 21st International Conference on Machine Learning 655–662 (2004).

  • 50.

    Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).

    Article 

    Google Scholar 

  • 51.

    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).

    Article 

    Google Scholar 

  • 52.

    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project (2020).

  • 53.

    Phillips, S. J. A brief tutorial on Maxent. AT&T Res. 190, 231–259 (2005).

    Google Scholar 

  • 54.

    RStudio Team RStudio: Integrated Development Environment for R. RStudio, PBC. http://www.rstudio.com/ (2020).

  • 55.

    Zizka, A., Antonelli, A. & Silvestro, D. Sampbias: Evaluating geographic sampling bias in biological collections. Ecography 44, 25–32 (2020).

    Article 

    Google Scholar 

  • 56.

    Almeida, M. C., Cortes, L. G. & De Marco Junior, P. New records and a niche model for the distribution of two Neotropical damselflies: Schistolobos boliviensis and Tuberculobasis inversa (Odonata: Coenagrionidae). Insect Conserv. Divers. 3, 252–256 (2010).

    Article 

    Google Scholar 

  • 57.

    De Siqueira, M. F., Durigan, G., de Marco Júnior, P. & Peterson, A. T. Something from nothing: Using landscape similarity and ecological niche modeling to find rare plant species. J. Nat. Conserv. 17, 25–32 (2009).

    Article 

    Google Scholar 

  • 58.

    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).

    Article 

    Google Scholar 

  • 59.

    McCune, J. L. Species distribution models predict rare species occurrences despite significant effects of landscape context. J. Appl. Ecol. 53, 1871–1879 (2016).

    Article 

    Google Scholar 

  • 60.

    Rinnhofer, L. J. et al. Iterative species distribution modelling and ground validation in endemism research: An Alpine jumping bristletail example. Biodiversity 21, 2845–2863 (2012).

    Google Scholar 

  • 61.

    Peterman, W. E., Crawford, J. A. & Kuhns, A. R. Using species distribution and occupancy modeling to guide survey efforts and assess species status. J. Nat. Conserv. 21, 114–121 (2013).

    Article 

    Google Scholar 

  • 62.

    Searcy, C. A. & Shaffer, H. B. Field validation supports novel niche modeling strategies in a cryptic endangered amphibian. Ecography 37, 983–992 (2014).

    Article 

    Google Scholar 

  • 63.

    Virzi, T., Lockwood, J. L., Lathrop, R. G., Grodsky, S. M. & Drake, D. Predicting American Oystercatcher (Haematopus palliatus) breeding distribution in an urbanized coastal ecosystem using maximum entropy modeling. Waterbirds 40, 104–122 (2017).

    Article 

    Google Scholar 

  • 64.

    Greaves, G. J., Mathieu, R. & Seddon, P. J. Predictive modelling and ground validation of the spatial distribution of the New Zealand long-tailed bat (Chalinolobus tuberculatus). Biol. Conserv. 132, 211–221 (2006).

    Article 

    Google Scholar 

  • 65.

    Raxworthy, C. J. et al. Predicting distributions of known and unknown reptile species in Madagascar. Nature 426, 837–841 (2003).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Thorn, J. S., Nijman, V., Smith, D. & Nekaris, K. A. I. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Divers. Distrib. 15, 289–298 (2009).

    Article 

    Google Scholar 

  • 67.

    Faith, D. et al. Bridging the biodiversity data gaps: Recommendations to meet users’ data needs. Biodivers. Inform. 8, 41–58 (2013).

    Article 

    Google Scholar 

  • 68.

    Pyke, G. H. & Ehrlich, P. R. Biological collections and ecological/environmental research: A review, some observations and a look to the future. Biology 85, 247–266 (2010).

    Google Scholar 

  • 69.

    Boakes, E. H. et al. Distorted views of biodiversity: Spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 70.

    Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379 (2013).

    Article 

    Google Scholar 

  • 71.

    Fourcade, Y., Engler, J. O., Rödder, D. & Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS ONE 9, e97122 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 72.

    National Integrated Coastal Management Framework. National Integrated Coastal Management Framework and Implementation Strategy for Vanuatu. https://extwprlegs1.fao.org/docs/pdf/van171039.pdf (2010).

  • 73.

    Department of Environmental and Protection and Conservation. Coastal Development. https://environment.gov.vu/images/EIA/EIA_G%20Coastal%20development.pdf (2017).


  • Source: Ecology - nature.com

    Phenotypic plasticity of fungal traits in response to moisture and temperature

    Body size dependent dispersal influences stability in heterogeneous metacommunities