Variation in size and shape of toxin glands among cane toads from native-range and invasive populations

  • 1.

    Caro, T. M. Antipredator Defenses in Birds and Mammals (University of Chicago Press, 2005).

  • 2.

    Emlen, D. J. The evolution of animal weapons. Annu. Rev. Ecol. Evol. Syst. 39, 387–413 (2008).

    Article  Google Scholar 

  • 3.

    Toledo, L. F., Sazima, I. & Haddad, C. F. Behavioural defences of anurans: An overview. Ethol. Ecol. Evol. 23, 1–25 (2011).

    Article  Google Scholar 

  • 4.

    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).

    Article  Google Scholar 

  • 5.

    Pettorelli, N., Coulson, T., Durant, S. M. & Gaillard, J. Predation, individual variability and vertebrate population dynamics. Oecologia 167, 305–314 (2011).

    ADS  PubMed  Article  Google Scholar 

  • 6.

    Stankowich, T. Armed and dangerous: predicting the presence and function of defensive weaponry in mammals. Adapt. Behav. 20, 32–43 (2011).

    Article  Google Scholar 

  • 7.

    Longson, C. G. & Joss, J. M. P. Optimal toxicity in animals: Predicting the optimal level of chemical defences. Funct. Ecol. 20, 731–735 (2006).

    Article  Google Scholar 

  • 8.

    Relyea, R. A. Predators come and predators go: The reversibility of predator-induced traits. Ecology 84, 1840–1848 (2003).

    Article  Google Scholar 

  • 9.

    Tollrian, R. & Harvell, D. The Ecology and Evolution of Inducible Defenses (Princeton University Press, 1999).

  • 10.

    Daly, D., Higginson, A. D., Chen, D., Ruxton, G. D. & Speed, M. P. Density-dependent investment in costly anti-predator defenses: An explanation for the weak survival benefit of group living. Ecol. Lett. 15, 576–583 (2012).

    PubMed  Article  Google Scholar 

  • 11.

    Kosmala, G., Brown, G. P. & Shine, R. Thin-skinned invaders: Geographic variation in the structure of the skin among populations of cane toads (Rhinella marina). Biol. J. Linn. Soc. 131, 611–621 (2020).

    Article  Google Scholar 

  • 12.

    Duellman, W. E. & Trueb, L. Biology of Amphibians (McGraw-Hill, 1994).

  • 13.

    Wells, K. The Ecology and Behavior of Amphibians (University of Chicago Press, 2007).

  • 14.

    König, E., Bininda-Emonds, O. R. P. & Shaw, C. The diversity and evolution of anuran skin peptides. Peptides 63, 96–117 (2014).

    PubMed  Article  CAS  Google Scholar 

  • 15.

    Hettyey, A., Tóth, Z. & Van Buskirk, J. Inducible chemical defences in animals. Oikos 123, 1025–1028 (2014).

    Article  Google Scholar 

  • 16.

    Blennerhasset, R., Bell-Anderson, K., Shine, R. & Brown, G. P. The cost of chemical defence: The impact of toxin depletion on growth and behaviour of cane toads (Rhinella marina). Proc. R. Soc. B. 286, 20190867 (2019).

    Article  CAS  Google Scholar 

  • 17.

    Chen, W., Hudson, C. M., DeVore, J. L. & Shine, R. Sex and weaponry: The distribution of toxin-storage glands on the bodies of male and female cane toads (Rhinella marina). Ecol. Evol. 7, 8950–8957 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    O’Donohoe, M. A. et al. Diversity and evolution of the parotoid macrogland in true toads (Anura: Bufonidae). Zool. J. Linn. Soc. 187, 453–478 (2019).

    Article  Google Scholar 

  • 19.

    Shine, R. The ecological impact of invasive cane toads (Bufo marinus) in Australia. Q. Rev. Biol. 85, 253–291 (2010).

    PubMed  Article  Google Scholar 

  • 20.

    Ujvari, B. et al. Isolation breeds naivety: island living robs Australian varanid lizards of toad-toxin immunity via four-base-pair mutation. Evolution 67, 289–294 (2013).

    PubMed  Article  Google Scholar 

  • 21.

    Pearcy, A. Selective feeding in Keelback snakes Tropidonophis mairii in an Australian wetland. Aust. Zool. 35, 843–845 (2011).

    Article  Google Scholar 

  • 22.

    Llewelyn, J. et al. Behavioural responses of an Australian colubrid snake (Dendrelaphis punctulatus) to a novel toxic prey item (the Cane Toad Rhinella marina). Biol. Invasions 20, 2507–2516 (2018).

    Article  Google Scholar 

  • 23.

    van Bocxlaer, I. et al. Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. Science 327, 679–682 (2010).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 24.

    Hudson, C. M., Vidal-García, M., Murray, T. G. & Shine, R. The accelerating anuran: evolution of locomotor performance in cane toads (Rhinella marina, Bufonidae) at an invasion front. Proc. R. Soc. B 287, 20201964 (2020).

    PubMed  Article  Google Scholar 

  • 25.

    Ward-Fear, G., Greenlees, M. J. & Shine, R. Toads on lava: spatial ecology and habitat use of invasive cane toads (Rhinella marina) in Hawai’i. PLoS ONE 11, e0151700 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Ward-Fear, G., Pearson, D. J., Brown, G. P. & Shine, R. Ecological immunization: in situ training of free-ranging predatory lizards reduces their vulnerability to invasive toxic prey. Biol. Lett. 12, 20150863 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Crossland, M. R., Brown, G. P., Anstis, M., Shilton, C. & Shine, R. Mass mortality of native anuran tadpoles in tropical Australia due to the invasive cane toad (Bufo marinus). Biol. Conserv. 141, 2387–2394 (2008).

    Article  Google Scholar 

  • 28.

    Hayes, R. A., Crossland, M. R., Hagman, M., Capon, R. J. & Shine, R. Ontogenetic variation in the chemical defences of cane toads (Bufo marinus): Toxin profiles and effects on predators. J. Chem. Ecol. 35, 391–399 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Hagman, M., Hayes, R. A., Capon, R. J. & Shine, R. Alarm cues experienced by cane toad tadpoles affect post-metamorphic morphology and chemical defences. Funct. Ecol. 23, 126–132 (2009).

    Article  Google Scholar 

  • 30.

    Üveges, B. et al. Age-and environment-dependent changes in chemical defences of larval and post-metamorphic toads. BMC Evol. Biol. 17, 137 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 31.

    Üveges, B. et al. Chemical defense of toad tadpoles under risk by four predator species. Ecol. Evol. 9, 6287–6299 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Bókony, V., Üveges, B., Verebélyi, V., Ujhegyi, N. & Móricz, Á. M. Toads phenotypically adjust their chemical defences to anthropogenic habitat change. Sci. Rep. 9, 3163 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 33.

    Hettyey, A. et al. Predator-induced changes in the chemical defence of a vertebrate. J. Anim. Ecol. 88, 1925–1935 (2019).

    PubMed  Article  Google Scholar 

  • 34.

    Hudson, C. M, Brown, G. P., Stuart, K. & Shine, R. Sexual and geographic divergence in head widths of invasive cane toads, Rhinella marina (Anura: Bufonidae) is driven by both rapid evolution and plasticity. Biol. J. Linn. Soc. 124, 188–199 (2018).

  • 35.

    Phillips, B. L., Brown, G. P., Webb, J. K. & Shine, R. Invasion and the evolution of speed in toads. Nature 439, 803 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 36.

    Hudson, C. M., McCurry, M. R., Lundgren, P., McHenry, C. R. & Shine, R. Constructing an invasion machine: The rapid evolution of a dispersal-enhancing phenotype during the cane toad invasion of Australia. PLoS ONE 11, e0156950 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Hudson, C. M., Brown, G. P. & Shine, R. It is lonely at the front: Contrasting evolutionary trajectories in male and female invaders. R. Soc. Open Sci. 3, 160687 (2016).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Brown, G., Kelehear, C. & Shine, R. The early toad gets the worm: Cane toads at an invasion front benefit from higher prey availability. J. Anim. Ecol. 82, 854–862 (2013).

    PubMed  Article  Google Scholar 

  • 39.

    Shine, R., Brown, G. P. & Phillips, B. L. An evolutionary process that assembles phenotypes through space rather than time. Proc. Natl Acad. Sci. USA 108, 5708–5711 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 40.

    Phillips, B. & Shine, R. The morphology, and hence impact, of an invasive species (the cane toad, Bufo marinus) changes with time since colonization. Anim. Conserv. 8, 407–413 (2005).

    Article  Google Scholar 

  • 41.

    Roff, D. A. Comparing sire and dam estimates of heritability: Jackknife and likelihood approaches. Heredity 100, 32–38 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Kliber, A. & Eckert, C. G. Interaction between founder effect and selection during biological invasion in an aquatic plant. Evolution 59, 1900–1913 (2005).

    CAS  PubMed  Google Scholar 

  • 43.

    Shine, R. Cane Toad Wars (University of California Press, 2018).

  • 44.

    Toledo, R. C. & Jared, C. Cutaneous adaptations to water balance in amphibians. Comp. Biochem. Physiol. A 105, 593–608 (1993).

    Article  Google Scholar 

  • 45.

    Kosmala, G., Brown, G. P., Shine, R. & Christian, K. Skin resistance to water gain and loss has changed in cane toads (Rhinella marina) during their Australian invasion. Ecol. Evol. 10, 13071–13079 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Crossland, M. R. & Shine, R. Cues for cannibalism: Cane toad tadpoles use chemical signals to locate and consume conspecific eggs. Oikos 120, 327–332 (2011).

    Article  Google Scholar 

  • 47.

    DeVore, J. L., Crossland, M. & Shine, R. Tradeoffs affect the adaptive value of plasticity: Stronger cannibal-induced defenses incur greater costs in toad larvae. Ecol. Monogr. (2020).

    Article  Google Scholar 

  • 48.

    Greenlees, M. J. & Shine, R. Impacts of eggs and tadpoles of the invasive cane toad (Bufo marinus) on aquatic predators in tropical Australia. Austral Ecol. 36, 53–58 (2011).

    Article  Google Scholar 

  • 49.

    Somaweera, R., Crossland, M. R. & Shine, R. Assessing the potential impact of invasive cane toads on a commercial freshwater fishery in tropical Australia. Wildl. Res. 38, 380–385 (2011).

    Article  Google Scholar 

  • 50.

    Cao, Y., Cui, K., Pan, H., Wu, J. & Wang, L. The impact of multiple climatic and geographic factors on the chemical defences of Asian toads (Bufo gargarizans Cantor). Sci. Rep. 9, 17236 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 51.

    Hague, M. T. J., Stokes, A. N., Feldman, C. R., Brodie, E. D. Jr. & Brodie, E. D. III. The geographic mosaic of arms race coevolution is closely matched to prey population structure. Evol. Lett. 4, 317–332 (2020).

  • 52.

    Jared, C. et al. Parotoid macroglands in toad (Rhinella jimi): Their structure and functioning in passive defence. Toxicon 54, 197–207 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 53.

    Toledo, R. C. & Jared, C. Cutaneous granular glands and amphibian venoms. Comp. Biochem. Physiol. A 111, 1–29 (1995).

    ADS  Article  Google Scholar 

  • 54.

    Maciel, N. M. et al. Composition of indolealkylamines of Bufo rubescens cutaneous secretions compared to six other Brazilian bufonids with phylogenetic implications. Comp. Biochem. Physiol. B 134, 641–649 (2003).

    PubMed  Article  CAS  Google Scholar 

  • 55.

    Sciani, J. M., Angeli, C. B., Antoniazzi, M. M., Jared, C. & Pimenta, D. C. Differences and similarities among parotoid macrogland secretions in South American toads: A preliminary biochemical delineation. Sci. World J. 2013, 937407 (2013).

    Article  CAS  Google Scholar 

  • 56.

    Habermehl, G. Venomous Animals and Their Toxins (Springer-Verlag, 1981).

  • 57.

    Garrett, C. M. & Boyer, D. M. Bufo marinus (cane toad) predation. Herpetol. Rev. 24, 148 (1993).

    Google Scholar 

  • 58.

    Pineau, X. & Romanoff, C. Envenomation of domestic carnivores. Rec. Méd. Vét. 171, 182–192 (1995).

    Google Scholar 

  • 59.

    Sakate, M. & Lucas de Oliveira, P. C. Toad envenoming in dogs: effects and treatment. J. Venom. Anim. Toxins 6, 52–62 (2000).

  • 60.

    Slade, R. W. & Moritz, C. Phylogeography of Bufo marinus from its natural and introduced ranges. Proc. R. Soc. B 265, 769–777 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. The cane toad’s (Chaunus [Bufo] marinus) increasing ability to invade Australia is revealed by a dynamically updated range model. Proc. R. Soc. B 274, 1413–1419 (2007).

    PubMed  Article  Google Scholar 

  • 62.

    Urban, M., Phillips, B. L., Skelly, D. K. & Shine, R. A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171, 134–148 (2008).

    Article  Google Scholar 

  • 63.

    Nullet, D., Juvik, J. O. & Wall, A. A Hawaiian mountain climate cross-section. Clim. Res. 5, 131–137 (1995).

    Article  Google Scholar 

  • 64.

    Kelehear, C. & Shine, R. Non-reproductive male cane toads (Rhinella marina) withhold sex-identifying information from their rivals. Biol. Lett. 15, 2019046 (2019).

    Article  Google Scholar 

  • 65.

    Shine, R., Everitt, C., Woods, D. & Pearson, D. J. An evaluation of methods used to cull invasive cane toads in tropical Australia. J. Pest Sci. 91, 1081–1091 (2018).

    Article  Google Scholar 

  • 66.

    Phillips, B. L. et al. Parasites and pathogens lag behind their host during periods of host range-advance. Ecology 91, 872–881 (2010).

    PubMed  Article  Google Scholar 

  • 67.

    Hudson, C. M., Brown, G. P. & Shine, R. Effects of toe-clipping on growth, body condition, and locomotion of cane toads (Rhinella marina). Copeia 105, 257–260 (2017).

    Article  Google Scholar 

  • 68.

    Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).

    PubMed  Article  Google Scholar 

  • Source: Ecology -

    Stoichiometric niche, nutrient partitioning and resource allocation in a solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92