in

Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone

  • 1.

    Etiope G, Ciccioli P. Earth’s degassing: a missing ethane and propane source. Science. 2009;323:478.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Etiope G, Drobniak A, Schimmelmann A. Natural seepage of shale gas and the origin of “eternal flames” in the Northern Appalachian Basin, USA. Mar Pet Geol. 2013;43:178–86.

    CAS 
    Article 

    Google Scholar 

  • 3.

    Farhan Ul Haque M, Crombie AT, Murrell JC. Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps. Microbiome. 2019;7:134.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Shennan JL. Utilisation of C2–C4 gaseous hydrocarbons and isoprene by microorganisms. J Chem Technol Biotechnol. 2006;81:237–56.

    CAS 
    Article 

    Google Scholar 

  • 5.

    Rojo F. Degradation of alkanes by bacteria. Environ Microbiol. 2009;11:2477–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J. 2013;7:885–95.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, et al. Thermophilic Archaea activate butane via alkyl-coenzyme M formation. Nature. 2016;539:396–401.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 8.

    Picone N, Mohammadi SS, Waajen AC, van Alen TA, Jetten MSM, Pol A, et al. More than a methanotroph: a broader substrate spectrum for Methylacidiphilum fumariolicum SolV. Front Microbiol. 2020;11:3193.

    Article 

    Google Scholar 

  • 9.

    Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature. 2007;450:879–82.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Sharp CE, Smirnova AV, Graham JM, Stott MB, Khadka R, Moore TR, et al. Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol. 2014;16:1867–78.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    van Teeseling MCF, Pol A, Harhangi HR, van der Zwart S, Jetten MSM, Op den Camp HJM, et al. Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol. 2014;80:6782–91.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK. Methane oxidation at 55 oC and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA. 2008;105:300–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, Op den Camp HJ. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature. 2007;450:874–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Coleman NV, Le NB, Ly MA, Ogawa HE, McCarl V, Wilson NL, et al. Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamily. ISME J. 2012;6:171–82.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Rochman FF, Kwon M, Khadka R, Tamas I, Lopez-Jauregui AA, Sheremet A, et al. Novel copper-containing membrane monooxygenases (CuMMOs) encoded by alkane-utilizing Betaproteobacteria. ISME J. 2020;14:714–26.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Tavormina PL, Orphan VJ, Kalyuzhnaya MG, Jetten MS, Klotz MG. A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep. 2011;3:91–100.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Khadka R, Clothier L, Wang L, Lim CK, Klotz MG, Dunfield PF. Evolutionary history of copper membrane monooxygenases. Front Microbiol. 2018;9:2493.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Lehtovirta-Morley LE. Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol Lett. 2018;365:fny058.

    Article 
    CAS 

    Google Scholar 

  • 19.

    Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol. 2015;6:1346.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Sayavedra-Soto LA, Hamamura N, Liu CW, Kimbrel JA, Chang JH, Arp DJ. The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family. Environ Microbiol Rep. 2011;3:390–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Semrau JD, DiSpirito AA, Yoon S. Methanotrophs and copper. FEMS Microbiol Rev. 2010;34:496–531.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Nyerges G, Stein LY. Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol Lett. 2009;297:131–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Sayavedra-Soto LA, Gvakharia B, Bottomley PJ, Arp DJ, Dolan ME. Nitrification and degradation of halogenated hydrocarbons—a tenuous balance for ammonia-oxidizing bacteria. Appl Microbiol Biotechnol. 2010;86:435–44.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Bédard C, Knowles RPhysiology. biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev. 1989;53:68–84.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Semrau JD. Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Front Microbiol. 2011;2:209.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Chen Y, Crombie A, Rahman MT, Dedysh SN, Liesack W, Stott MB, et al. Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol. 2010;192:3840–1.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Bordel S, Crombie AT, Muñoz R, Murrell JC. Genome scale metabolic model of the versatile methanotroph Methylocella silvestris. Micro Cell Fact. 2020;19:144.

    CAS 
    Article 

    Google Scholar 

  • 28.

    Dunfield PF, Yimga MT, Dedysh SN, Berger U, Liesack W, Heyer J. Isolation of a Methylocystis strain containing a novel pmoA-like gene. FEMS Microbiol Ecol. 2002;41:17–26.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Kits KD, Klotz MG, Stein LY. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol. 2015;17:3219–32.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Op den Camp HJ, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep. 2009;1:293–306.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Baani M, Liesack W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci USA 2008;105:10203–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Kits KD, Campbell DJ, Rosana AR, Stein LY. Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8. Front Microbiol. 2015;6:1072.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Anvar SY, Frank J, Pol A, Schmitz A, Kraaijeveld K, den Dunnen JT, et al. The genomic landscape of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV. BMC Genom. 2014;15:914.

    Article 

    Google Scholar 

  • 34.

    Kruse T, Ratnadevi CM, Erikstad H-A, Birkeland N-K. Complete genome sequence analysis of the thermoacidophilic verrucomicrobial methanotroph “Candidatus Methylacidiphilum kamchatkense” strain Kam1 and comparison with its closest relatives. BMC Genom. 2019;20:642.

    Article 
    CAS 

    Google Scholar 

  • 35.

    Hou S, Makarova KS, Saw JHW, Senin P, Ly BV, Zhou Z, et al. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct. 2008;3:26.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Erikstad HA, Ceballos RM, Smestad NB, Birkeland NK. Global biogeographic distribution patterns of thermoacidophilic Verrucomicrobia methanotrophs suggest allopatric evolution. Front Microbiol. 2019;10:1129.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Schmitz RA, Peeters SH, Versantvoort W, Picone N, Pol A, Jetten MSM, et al. Verrucomicrobial methanotrophs: ecophysiology of metabolically versatile acidophiles. FEMS Microbiol Rev. 2021. https://doi.org/10.1093/femsre/fuab007.

  • 38.

    Carere CR, McDonald B, Peach HA, Greening C, Gapes DJ, Collet C, et al. Hydrogen oxidation influences glycogen accumulation in a verrucomicrobial methanotroph. Front Microbiol. 2019;10:1873.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Erikstad HA, Jensen S, Keen TJ, Birkeland NK. Differential expression of particulate methane monooxygenase genes in the verrucomicrobial methanotroph ‘Methylacidiphilum kamchatkense’ Kam1. Extremophiles. 2012;16:405–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Khadem AF, Pol A, Wieczorek AS, Jetten MSM, Op Den Camp H. Metabolic regulation of “Ca. Methylacidiphilum fumariolicum” SolV cells grown under different nitrogen and oxygen limitations. Front Microbiol. 2012;3:266.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Carere CR, Hards K, Wigley K, Carman L, Houghton KM, Cook GM, et al. Growth on formic acid is dependent on intracellular pH homeostasis for the thermoacidophilic methanotroph Methylacidiphilum sp. RTK17.1. Front Microbiol. 2021;12:536.

    Article 

    Google Scholar 

  • 42.

    Singleton CM, McCalley CK, Woodcroft BJ, Boyd JA, Evans PN, Hodgkins SB, et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 2018;12:2544–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Adachi K, Katsuta A, Matsuda S, Peng X, Misawa N, Shizuri Y, et al. Smaragdicoccus niigatensis gen. nov., sp. nov., a novel member of the suborder Corynebacterineae. Int J Syst Evol Microbiol. 2007;57:297–301.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Whitman WB, Woyke T, Klenk H-P, Zhou Y, Lilburn TG, Beck BJ, et al. Genomic encyclopedia of bacterial and archaeal type strains, phase III: the genomes of soil and plant-associated and newly described type strains. Stand Genom Sci. 2015;10:26.

    Article 
    CAS 

    Google Scholar 

  • 45.

    Capaccioni B, Mangani F. Monitoring of active but quiescent volcanoes using light hydrocarbon distribution in volcanic gases: the results of 4 years of discontinuous monitoring in the Campi Flegrei (Italy). Earth Planet Sci Lett. 2001;188:543–55.

    CAS 
    Article 

    Google Scholar 

  • 46.

    Caliro S, Chiodini G, Moretti R, Avino R, Granieri D, Russo M, et al. The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim Cosmochim Acta. 2007;71:3040–55.

    CAS 
    Article 

    Google Scholar 

  • 47.

    Chiodini G, Caliro S, Cardellini C, Granieri D, Avino R, Baldini A, et al. Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. J Geophys Res Solid Earth. 2010;115:B03205.

    Article 
    CAS 

    Google Scholar 

  • 48.

    Tamburello G, Caliro S, Chiodini G, De Martino P, Avino R, Minopoli C, et al. Escalating CO2 degassing at the Pisciarelli fumarolic system, and implications for the ongoing Campi Flegrei unrest. J Volcano Geotherm Res. 2019;384:151–7.

    CAS 
    Article 

    Google Scholar 

  • 49.

    de Bruyn JC, Boogerd FC, Bos P, Kuenen JG. Floating filters, a novel technique for isolation and enumeration of fastidious, acidophilic, iron-oxidizing, autotrophic bacteria. Appl Environ Microbiol. 1990;56:2891–4.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173:697–703.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 1992;89:5685–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Hurt RA, Qiu X, Wu L, Roh Y, Palumbo AV, Tiedje JM, et al. Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol. 2001;67:4495–503.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.

    CAS 
    Article 

    Google Scholar 

  • 54.

    Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011;27:2957–63.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 55.

    Li W, Fu L, Niu B, Wu S, Wooley J. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief Bioinform. 2012;13:656–68.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Vallenet D, Calteau A, Dubois M, Amours P, Bazin A, Beuvin M, et al. MicroScope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis. Nucleic Acids Res. 2020;48:D579–D89.

    CAS 

    Google Scholar 

  • 59.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Thompson JD, Higgins DG, Gibson TJ, CLUSTAL W. improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Hall TA. BioEdit : a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.

    CAS 

    Google Scholar 

  • 62.

    Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Yoon SH, Ha S, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Salamov VSA, Solovyevand A. Automatic annotation of microbial genomes and metagenomic sequences. Li RW, editor. Hauppauge, N.Y.: Nova Science Publishers; 2011. 61–78.

  • 65.

    Umarov RK, Solovyev VV. Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLOS One. 2017;12:e0171410.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 66.

    Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D. ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol. 2011;8:11–3.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Shen T, Stieglmeier M, Dai J, Urich T, Schleper C. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol Lett. 2013;344:121–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Mackay D, Shiu WY. A critical review of Henry’s law constants for chemicals of environmental interest. J Phys Chem Ref Data. 1981;10:1175–99.

    CAS 
    Article 

    Google Scholar 

  • 69.

    Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 2009;461:976–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Carere CR, Hards K, Houghton KM, Power JF, McDonald B, Collet C, et al. Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME J. 2017;11:2599–610.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Mohammadi S, Pol A, van Alen TA, Jetten MSM, Op den Camp HJM. Methylacidiphilum fumariolicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J. 2017;11:945–58.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, et al. Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol. 2011;193:4438–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Hogendoorn C, Pol A, Nuijten GHL, Op den Camp HJM. Methanol production by “Methylacidiphilum fumariolicum” SolV under different growth conditions. Appl Environ Microbiol. 2020;86:e01188–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Crombie AT, Murrell JC. Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature. 2014;510:148–51.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Ashraf W, Mihdhir A, Colin Murrell J. Bacterial oxidation of propane. FEMS Microbiol Lett. 1994;122:1–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Hausinger RP. New insights into acetone metabolism. J Bacteriol. 2007;189:671–3.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Dedysh SN, Dunfield PF. Facultative methane oxidizers. In: McGenity TJ, editor. Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Cham: Springer International Publishing; 2019:279–97. https://doi.org/10.1007/978-3-030-14796-9_11.

  • 78.

    Belova SE, Baani M, Suzina NE, Bodelier PLE, Liesack W, Dedysh SN. Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ Microbiol Rep. 2011;3:36–46.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Belova SE, Kulichevskaya IS, Bodelier PL, Dedysh SN. Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. Int J Syst Evol Microbiol. 2013;63:1096–104.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Fisher OS, Kenney GE, Ross MO, Ro SY, Lemma BE, Batelu S, et al. Characterization of a long overlooked copper protein from methane- and ammonia-oxidizing bacteria. Nat Commun. 2018;9:4276.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 81.

    El Sheikh AF, Poret-Peterson AT, Klotz MG. Characterization of two new genes, amoR and amoD, in the amo operon of the marine ammonia oxidizer Nitrosococcus oceani ATCC 19707. Appl Environ Microbiol. 2008;74:312–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 82.

    Pol A, Barends TR, Dietl A, Khadem AF, Eygensteyn J, Jetten MS, et al. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol. 2014;16:255–64.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 83.

    Sützl L, Foley G, Gillam EMJ, Bodén M, Haltrich D. The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases. Biotechnol Biofuels. 2019;12:118.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Fröbel J, Rose P, Müller M. Twin-arginine-dependent translocation of folded proteins. Philos Trans R Soc Lond B Biol Sci. 2012;367:1029–46.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 85.

    Sluis MK, Larsen RA, Krum JG, Anderson R, Metcalf WW, Ensign SA. Biochemical, molecular, and genetic analyses of the acetone carboxylases from Xanthobacter autotrophicus strain Py2 and Rhodobacter capsulatus strain B10. J Bacteriol. 2002;184:2969–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    Kotani T, Yurimoto H, Kato N, Sakai Y. Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol. 2007;189:886–93.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 87.

    Furuya T, Nakao T, Kino K. Catalytic function of the mycobacterial binuclear iron monooxygenase in acetone metabolism. FEMS Microbiol Lett. 2015;362:fnv136.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 88.

    Koop DR, Casazza JP. Identification of ethanol-inducible P-450 isozyme 3a as the acetone and acetol monooxygenase of rabbit microsomes. J Biol Chem. 1985;260:13607–12.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 89.

    Patel NA, Crombie A, Slade SE, Thalassinos K, Hughes C, Connolly JB, et al. Comparison of one- and two-dimensional liquid chromatography approaches in the label-free quantitative analysis of Methylocella silvestris. J Proteome Res. 2012;11:4755–63.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 90.

    Jain M, Nagar P, Sharma A, Batth R, Aggarwal S, Kumari S, et al. GLYI and D-LDH play key role in methylglyoxal detoxification and abiotic stress tolerance. Sci Rep. 2018;8:5451.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 91.

    MacLean MJ, Ness LS, Ferguson GP, Booth IR. The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli. Mol Microbiol. 1998;27:563–71.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 92.

    Detman A, Mielecki D, Pleśniak Ł, Bucha M, Janiga M, Matyasik I. et al. Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle. Biotechnol Biofuels. 2018;11:116.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 93.

    Cooper RA, Kornberg HL. The direct synthesis of phosphoenolpyruvate from pyruvate by Escherichia coli. Proc R Soc Lond B Biol Sci. 1967;168:263–80.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 94.

    Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC. Oxidation of methane by a biological dicopper centre. Nature. 2010;465:115–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 95.

    Ross MO, MacMillan F, Wang J, Nisthal A, Lawton TJ, Olafson BD, et al. Particulate methane monooxygenase contains only mononuclear copper centers. Science. 2019;364:566–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    Ro SY, Schachner LF, Koo CW, Purohit R, Remis JP, Kenney GE, et al. Native top-down mass spectrometry provides insights into the copper centers of membrane-bound methane monooxygenase. Nat Commun. 2019;10:2675.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 97.

    Liew EF, Tong D, Coleman NV, Holmes AJ. Mutagenesis of the hydrocarbon monooxygenase indicates a metal centre in subunit-C, and not subunit-B, is essential for copper-containing membrane monooxygenase activity. Microbiology. 2014;160:1267–77.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 98.

    Nguyen TT, Hwang IY, Na JG, Lee EY. Biological conversion of propane to 2-propanol using group I and II methanotrophs as biocatalysts. J Ind Microbiol Biotechnol. 2019;46:675–85.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 99.

    Hur DH, Nguyen TT, Kim D, et al. EY. Selective bio-oxidation of propane to acetone using methane-oxidizing Methylomonas sp. DH-1 J Ind Microbiol Biotechnol. 2017;44:1097–105.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 100.

    Schoell M. Genetic characterization of natural gases. AAPG Bull. 1983;67:2225–38.

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Iron and sulfate reduction structure microbial communities in (sub-)Antarctic sediments

    Grace Moore ’21 receives Michel David-Weill Scholarship