in

Vulnerability assessment of nearshore clam habitat subject to storm waves and surge

  • 1.

    Knutson, T. R. et al. Tropical cyclones and climate change. Nat. Geosci. 3(3), 157–163 (2010).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Lin, N. & Emanuel, K. Grey swan tropical cyclones. Nat. Clim. Change 6, 106–111 (2016).

    ADS  Article  Google Scholar 

  • 3.

    de Vet, P. L. M. et al. Variations in storm-induced bed level dynamics across intertidal flats. Sci. Rep. 10, 12877 (2020).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    Harris, L., Nel, R., Smale, M. & Schoeman, D. Swashed away? storm impacts on sandy beach macrofaunal communities. Estuar. Coast. Shelf Sci. 94(3), 210–221 (2011).

    ADS  Article  Google Scholar 

  • 5.

    Machado, P. M., Costa, L. L., Suciu, M. C., Tavares, D. C. & Zalmon, I. R. Extreme storm wave influence on sandy beach macrofauna with distinct human pressures. Mar. Pollut. Bull. 107(1), 125–135 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Costa, L. L., Machado, P. M. & Zalmon, I. R. Do natural disturbances have significant effects on sandy beach macrofauna of Southeastern Brazil?. Zoologia (Curitiba) 36(1), e29814 (2019).

    Google Scholar 

  • 7.

    Ghorai, D. & Sen, H. S. Role of climate change in increasing occurrences oceanic hazards as a potential threat to coastal ecology. Nat Hazards 75, 1223–1245 (2015).

    Article  Google Scholar 

  • 8.

    Posey, M., Lindberg, W., Alphin, T. & Vose, F. Influence of storm disturbance on an offshore benthic community. Bull. Mar. Sci. 59(3), 523–529 (1996).

    Google Scholar 

  • 9.

    Saloman, C. H. & Naughton, S. P. Effect of Hurricane Eloise on the benthic fauna of Panama City Beach, Florida, USA. Mar. Biol. 42(4), 357–363 (1977).

    Article  Google Scholar 

  • 10.

    Abe, H. et al. Impact of the 2011 tsunami on the Manila clam Ruditapes philippinarum population and subsequent population recovery in Matsukawaura Lagoon, Fukushima, northeastern Japan. Region. Stud. Mar. Sci. 9, 97–105 (2017).

    Article  Google Scholar 

  • 11.

    Dreyer, J., Bailey-Brock, J. H. & McCarthy, S. A. The immediate effects of Hurricane Iniki on intertidal fauna on the south shore of O ‘ahu. Mar. Environ. Res. 59(4), 367–380 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Izumi, S. & Masabumi, S. Behavioral characteristics of the juvenile Japanese surf clam Pseudocardium sachalinensis in response to sand erosion and deposition associated with oscillatory water flow. Fish. Sci. 64(3), 367–372 (1998).

    Article  Google Scholar 

  • 13.

    Bricheno, L. M., Wolf, J. & Aldridge, J. Distribution of natural disturbance due to wave and tidal bed currents around the UK. Cont. Shelf Res. 109, 67–77 (2015).

    ADS  Article  Google Scholar 

  • 14.

    Browning, T. N. et al. Widespread deposition in a coastal bay following three major 2017 hurricanes (Irma, Jose, and Maria). Sci. Rep. 9(1), 7101 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 15.

    Hagerman, G. & Rieger, R. Dispersal of benthic Meiofauna by wave and current action in Bogue sound, North Carolina, USA. Mar. Ecol. 2(3), 245–270 (1981).

    ADS  Article  Google Scholar 

  • 16.

    Corte, G. N. et al. Storm effects on intertidal invertebrates: Increased beta diversity of few individuals and species. PeerJ 5, e3360 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Murphy, A. E. et al. Quantifying the effects of commercial clam aquaculture on c and n cycling: An integrated ecosystem approach. Estuar. Coasts 39(6), 1–16 (2016).

    Article  CAS  Google Scholar 

  • 18.

    Turra, A. et al. Population biology and secondary production of the harvested clam Tivela Mactroides (Born, 1778) (Bivalvia, Veneridae) in Southeastern Brazil. Mar. Ecol. 36, 2 (2015).

    Article  Google Scholar 

  • 19.

    Thomas, S. et al. Does the size structure of venerid clam populations affect ecosystem functions on intertidal sandflats?. Estuar. Coasts 20, 20 (2020).

    Google Scholar 

  • 20.

    Wong, W. H., Rabalais, N. N. & Turner, R. E. Abundance and ecological significance of the clam Rangia Cuneata (Sowerby, 1831) in the upper Barataria Estuary (Louisiana, USA). Hydrobiologia 651(1), 305–315 (2010).

    CAS  Article  Google Scholar 

  • 21.

    Adkins, S. C., Marsden, I. D. & Pirker, J. G. Reproduction, growth and size of a burrowing intertidal clam exposed to varying environmental conditions in estuaries. Inverteb. Reprod. Dev. 60(3), 223–237 (2016).

    CAS  Article  Google Scholar 

  • 22.

    Clements, J. C. & Hunt, H. L. Effects of CO2-driven sediment acidification on infaunal marine bivalves: A synthesis. Mar. Pollut. Bull. 117(1–2), 6–16 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Clements, J. C., Woodard, K. D. & Hunt, H. L. Porewater acidification alters the burrowing behavior and post-settlement dispersal of juvenile soft-shell clams (Mya arenaria). J. Exp. Mar. Biol. Ecol. 477(Apr.), 103–111 (2016).

    Article  Google Scholar 

  • 24.

    Ocaña, F. A., Pech, D., Simões, N. & Hernández-Ávila, I. Spatial assessment of the vulnerability of benthic communities to multiple stressors in the Yucatan Continental Shelf, Gulf of Mexico. Ocean Coast. Manag. 181, 104900 (2019).

    Article  Google Scholar 

  • 25.

    Ortega, L., Celentano, E., Delgado, E. & Defeo, O. Climate change influences on abundance, individual size and body abnormalities in a sandy beach clam. Mar. Ecol. Progress Ser. 20, 545 (2016).

    Google Scholar 

  • 26.

    Hinchey, E. K., Schaffner, L. C., Hoar, C. C., Vogt, B. W. & Batte, L. P. Responses of estuarine benthic invertebrates to sediment burial: The importance of mobility and adaptation. Hydrobiologia 556(1), 85–98 (2006).

    Article  Google Scholar 

  • 27.

    Redjah, I. et al. The importance of turbulent kinetic energy on transport of juvenile clams (Mya arenaria). Aquaculture 307(1–2), 20–28 (2010).

    Article  Google Scholar 

  • 28.

    Forêt, M., Tremblay, R., Neumeier, U. & Olivier, F. Temporal variation of secondary migrations potential: Concept of temporal windows in four commercial bivalve species. Aquat. Liv. Resour. 31, 19 (2018).

    Article  Google Scholar 

  • 29.

    Hunt, H. L. & Chant, F. R. J. Modeling bedload transport of juvenile bivalves: Predicted changes in distribution and scale of postlarval dispersal. Estuar. Coasts 32(6), 1090–1102 (2009).

    Article  Google Scholar 

  • 30.

    Carolyn, J. L., Conrad, A. P. & Vonda, J. C. Behaviour controls post-settlement dispersal by the juvenile bivalves Austrovenus stutchburyi and Macomona Liliana. J. Exp. Mar. Biol. Ecol. 306, 51–74 (2004).

    Article  Google Scholar 

  • 31.

    St-Onge, P., Miron, G. & Moreau, G. Burrowing behaviour of the softshell clam (Mya arenaria) following erosion and transport. J. Exp. Mar. Biol. Ecol. 340(1), 103–111 (2007).

    Article  Google Scholar 

  • 32.

    Bolam, S. G. Burial survival of benthic macrofauna following deposition of simulated dredged material. Environ. Monit. Assess. 181(1–4), 13–27 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Fiori, S. M. & Carcedo, M. C. Influence of grain size on burrowing and alongshore distribution of the yellow clam (Amarilladesma mactroides). J. Shellf. Res. 34(3), 785–789 (2015).

    Article  Google Scholar 

  • 34.

    Lewis, N. S., Fox, E. W. & Dewitt, T. H. Estimating the distribution of harvested estuarine bivalves with natural-history-based habitat suitability models. Estuar. Coast. Shelf Sci. 219(Apr. 5), 453–472 (2019).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Lundquist, C. J. et al. Spatial variability in recolonisation potential: Influence of organism behaviour and hydrodynamics on the distribution of macrofaunal colonists. Mar. Ecol. Prog. Ser. 324, 67–81 (2006).

    ADS  Article  Google Scholar 

  • 36.

    Hunt, H. L. Transport of juvenile clams: Effects of species and sediment grain size. J. Exp. Mar. Biol. Ecol. 312(2), 271–284 (2004).

    Article  Google Scholar 

  • 37.

    Lundquist, C. J., Pilditch, C. A. & Cummings, V. J. Behaviour controls post-settlement dispersal by the juvenile bivalves Austrovenus stutchburyi and Macomona liliana. J. Exp. Mar. Biol. Ecol. 306(1), 51–74 (2004).

    Article  Google Scholar 

  • 38.

    Sakurai, I., Nakajima, K. & Yamashita, T. Effect of oscillatory water flow on burrowing behaviors of the Japanese surf clam Pseudocardium sachalinensis. Nippon Suisan Gakkaishi 64(3), 406–411 (1998).

    Article  Google Scholar 

  • 39.

    Alejandro, A., Doris, O. & Pedro, T. Effect of transfer time, temperature, and size on burrowing capacity of juvenile clams, Mulinia edulis, from hatchery. World Aquacult. Soc. 50(4), 1–15 (2018).

    Google Scholar 

  • 40.

    Zaklan, S. D. & Ydenberg, R. The body size–burial depth relationship in the infaunal clam Mya arenaria. J. Exp. Mar. Biol. Ecol. 215(1), 1–17 (1997).

    Article  Google Scholar 

  • 41.

    Zwarts, L. & Wanink, J. Siphon size and burying depth in deposit-and suspension-feeding benthic bivalves. Mar. Biol. 100(2), 227–240 (1989).

    Article  Google Scholar 

  • 42.

    Abarca, A., Oliva, D. & Toledo, P. Effect of transfer time, temperature, and size on burrowing capacity of juvenile clams, Mulinia edulis, from hatchery. J. World Aquacult. Soc. 50(4), 774–788 (2019).

    Article  Google Scholar 

  • 43.

    Nunez, J. D., Laitano, M. V., Meretta, P. E. & Ocampo, E. H. Burrowing behavior of an infaunal clam species after siphon nipping. J. Exp. Mar. Biol. Ecol. 459(Oct. 4), 45–50 (2014).

    Article  Google Scholar 

  • 44.

    Maurer, D., Keck, R. T., Tinsman, J. C. & Leathem, W. A. Vertical migration and mortality of benthos in dredged material—part I: Mollusca. Mar. Environ. Res. 4(4), 299–319 (1981).

    Article  Google Scholar 

  • 45.

    Sakurai, I. & Seto, M. Behavioral characteristics of the juvenile Japanese surf clam Pseudocardium sachalinensis in response to sand erosion and deposition associated with oscillatory water flow. Fish. Sci. 64(3), 367–372 (1998).

    CAS  Article  Google Scholar 

  • 46.

    Hutchison, Z. L., Hendrick, V. J., Burrows, M. T., Wilson, B. & Last, K. S. Buried alive: The behavioural response of the mussels, modiolus modiolus and mytilus edulis to sudden burial by sediment. PLoS One 11(3), e0151471 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 47.

    Ma, D., Shi, W. & Yu, J. Burial effects of Tianjin nangang industrial zone dredging Materialon Macrobenthos. J. Zhejiang Ocean Univ. 20, 20 (2015) ((in Chinese)).

    Google Scholar 

  • 48.

    Quinn, N., Atkinson, P. & Wells, N. Modelling of tide and surge elevations in the Solent and surrounding waters: The importance of tide–surge interactions. Estuar. Coast. Shelf Sci. 112(112), 162–172 (2012).

    ADS  Article  Google Scholar 

  • 49.

    Houser and Chris. Alongshore variation in the morphology of coastal dunes: Implications for storm response. Geomorphology 199, 48–61 (2013).

    ADS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets

    A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy)