in

Water constraints drive allometric patterns in the body shape of tree frogs

  • 1.

    Adams, D. C. & Nistri, A. Ontogenetic convergence and evolution of foot morphology in european cave salamanders (Family: Plethodontidae). BMC Evol. Biol. 10, 216 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Baken, E. K., Mellenthin, L. E. & Adams, D. C. Macroevolution of desiccation-related morphology in plethodontid salamanders as inferred from a novel surface area to volume ratio estimation approach. Evolution 74, 476–486 (2020).

    PubMed  Article  Google Scholar 

  • 3.

    Martinez, P. A. et al. The contribution of neutral evolution and adaptive processes in driving phenotypic divergence in a model mammalian species, the andean fox Lycalopex culpaeus. J. Biogeogr. 45, 1114–1125 (2018).

    Article  Google Scholar 

  • 4.

    Vidal-García, M., Byrne, P. G., Roberts, J. D. & Keogh, J. S. The role of phylogeny and ecology in shaping morphology in 21 genera and 127 species of australo-papuan myobatrachid frogs. J. Evol. Biol. 27, 181–192 (2014).

    PubMed  Article  Google Scholar 

  • 5.

    Adams, D. C. Parallel evolution of character displacement driven by competitive selection in terrestrial salamanders. BMC Evol. Biol. 10, 72 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Losos, J. B. Ecological character displacement and the study of adaptation. Proc. Natl. Acad. Sci. 97, 5693–5695 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 7.

    Moen, D. S., Irschick, D. J. & Wiens, J. J. Evolutionary conservatism and convergence both lead to striking similarity in ecology, morphology and performance across continents in frogs. Proc. R. Soc. B. 280, 20132156 (2013).

    PubMed  Article  Google Scholar 

  • 8.

    Amado, T. F., Bidau, C. J. & Olalla-Tárraga, M. Á. Geographic variation of body size in new world anurans: energy and water in a balance. Ecography 42, 456–466 (2019).

    Article  Google Scholar 

  • 9.

    Gouveia, S. F. et al. Biophysical modeling of water economy can explain geographic gradient of body size in anurans. Am. Nat. 193, 51–58 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Olalla-Tárraga, M. Á., Diniz-Filho, J. A. F., Bastos, R. P. & Rodríguez, M. Á. Geographic body size gradients in tropical regions: water deficit and anuran body size in the brazilian cerrado. Ecography 32, 581–590 (2009).

    Article  Google Scholar 

  • 11.

    Cooney, C. R. et al. Ecology and allometry predict the evolution of avian developmental durations. Nat. Commun. 11, 1–9 (2020).

    Article  CAS  Google Scholar 

  • 12.

    Kriegman, S., Cheney, N. & Bongard, J. How morphological development can guide evolution. Sci. Rep. 8, 1–10 (2018).

    Article  CAS  Google Scholar 

  • 13.

    Moczek, A. P. Re-evaluating the environment in developmental evolution. Front. Ecol. Evol. 3, 1–8 (2015).

    Article  Google Scholar 

  • 14.

    Richter-Boix, A., Tejedo, M. & Rezende, E. L. Evolution and plasticity of anuran larval development in response to desiccation. a comparative analysis. Ecol. Evol. 1, 15–25 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Castro, K. M. S. A., do Santos, M. P., Brito, M. F. G., Bidau, C. J. & Martinez, P. A. Ontogenetic allometry conservatism across five teleost orders. J. Fish Biol. 93, 745–749 (2018).

    Article  Google Scholar 

  • 16.

    Skúlason, S. et al. A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biol. Rev. 94, 1786–1808 (2019).

    PubMed  Article  Google Scholar 

  • 17.

    Porter, W. P. & Gates, D. M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 227–244 (1969).

    Article  Google Scholar 

  • 18.

    Thompson, D. A. On Growth and Form (Cambridge University Press, Cambridge, 1917).

    Google Scholar 

  • 19.

    Schmidt-Nielsen, K. Scaling: Why is Animal Size so Important? (Cambridge University Press, Cambridge, 1984).

    Google Scholar 

  • 20.

    Amado, T. F., Pinto, M. G. M. & Olalla-Tárraga, M. Á. Anuran 3d models reveal the relationship between surface area-to-volume ratio and climate. J. Biogeogr. 46, 1429–1437 (2019).

    Google Scholar 

  • 21.

    Ashton, K. G. Do amphibians follow bergmann’s rule?. Can. J. Zool. 80, 708–716 (2002).

    Article  Google Scholar 

  • 22.

    Glazier, D. Effects of contingency versus constraints on the body-mass scaling of metabolic rate. Challenges 9, 4 (2018).

    Article  Google Scholar 

  • 23.

    Gouveia, S. F. & Correia, I. Geographical clines of body size in terrestrial amphibians: water conservation hypothesis revisited. J. Biogeogr. 43, 2075–2084 (2016).

    Article  Google Scholar 

  • 24.

    Lindsey, C. C. Body sizes of poikilotherm vertebrates at different latitudes. Evolution 20, 456–465 (1966).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Bergmannn, C. Über die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Göttinger Stud. 1, 595–708 (1847).

    Google Scholar 

  • 26.

    Nevo, E. Adaptive variation in size of cricket frogs. Ecology 54, 1271–1281 (1973).

    Article  Google Scholar 

  • 27.

    Tracy, C. R., Christian, K. A. & Tracy, C. R. Not just small, wet, and cold : effects of body size and skin resistance on thermoregulation and arboreality of frogs. Ecology 91, 1477–1484 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Wells, K. D. The Ecology and Behavior of Amphibians (The University of Chicago Press, Chicago, 2007).

    Google Scholar 

  • 29.

    Perez, D., Sheehy, C. M. & Lillywhite, H. B. Variation of organ position in snakes. J. Morphol. 280, 1798–1807 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Amiel, J. J., Chua, B., Wassersug, R. J. & Jones, D. R. Temperature-dependent regulation of blood distribution in snakes. J. Exp. Biol. 214, 1458–1462 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Canals, M. Thermal ecology of small animals. Biol Res 31, 367–374 (1998).

    Google Scholar 

  • 32.

    Tracy, C. R. A model of the dynamic exchanges of water and energy between a terrestrial amphibian and its environment. Ecol. Monogr. 46, 293–326 (1976).

    Article  Google Scholar 

  • 33.

    Gould, S. J. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41, 587–640 (1966).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Klingenberg, C. P. Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol. Rev. 73, 79–123 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Klingenberg, C. P. Size, shape, and form: concepts of allometry in geometric morphometrics. Dev. Genes Evol. 226, 113–137 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Voje, K. L., Hansen, T. F., Egset, C. K., Bolstad, G. H. & Pélabon, C. Allometric constraints and the evolution of allometry. Evolution 68, 866–885 (2014).

    PubMed  Article  Google Scholar 

  • 37.

    Pélabon, C. et al. Evolution of morphological allometry. Ann. N. Y. Acad. Sci. 1320, 58–75 (2014).

    ADS  PubMed  Article  Google Scholar 

  • 38.

    Duellman, W. E., Marion, A. B. & Hedges, S. B. Phylogenetics, classification, and biogeography of the treefrogs (amphibia: anura: arboranae). Zootaxa 4104, 001–109 (2016).

    Article  Google Scholar 

  • 39.

    Kamilar, J. M. & Cooper, N. Phylogenetic signal in primate behaviour, ecology and life history. Phil. Trans. R. Soc. B. 368, 20120341 (2013).

    PubMed  Article  Google Scholar 

  • 40.

    Landis, M. J. & Schraiber, J. G. Pulsed evolution shaped modern vertebrate body sizes. Proc. Natl. Acad. Sci. U. S. A. 114, 13224–13229 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Levy, D. L. & Heald, R. Biological scaling problems and solutions in amphibians. Cold Spring Harb. Perspect. Biol. 8, a019166 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Boutilier, R. G., Stiffler, D. F. & Toews, D. Exchange of respiratory gases, ions, and water in amphibious and aquatic amphibians. In Environmental Physiology of Amphibians (eds Feder, M. E. & Burggren, W. W.) 81–124 (University of Chicago Press, Chicago, 1992).

    Google Scholar 

  • 43.

    Spotila, J. R., O’connor, M. P. & Bakken, G. S. Biophysics of heat and mass transfer. In Environmental Physiology of the Amphibians (eds Feder, M. E. & Burggren, W. W.) 59–80 (University of Chicago Press, Chicago, 1992).

    Google Scholar 

  • 44.

    Sanger, T. J. et al. Convergent evolution of sexual dimorphism in skull shape using distinct developmental strategies. Evolution 67, 2180–2193 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Navas, C. A., Antoniazzi, M. M. & Jared, C. A preliminary assessment of anuran physiological and morphological adaptation to the caatinga, a brazilian semi-arid environment. Int. Congr. Ser. 1275, 298–305 (2004).

    Article  Google Scholar 

  • 46.

    Wiley, D. F. et al. Evolutionary Morphing Minneapolis, MN, USA Minneapolis, MN, USA (IEEE Computer Society, Minneapolis, 2005).

    Google Scholar 

  • 47.

    Klingenberg, C. P. & Gidaszewski, N. A. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst. Biol. 59, 245–261 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Dryden, I. L. & Mardia, K. V. Statistical Shape Analysis (Wiley, Hoboken, 1998).

    Google Scholar 

  • 49.

    Adams, D. C. A generalized k statistic for estimating phylogenetic signal from shape and other high-dimenstional multivariate data. Syst. Biol. 63(5), 685–697 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).

    PubMed  Article  Google Scholar 

  • 51.

    Adams, D. C. & Otárola-Castillo, E. Geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).

    Article  Google Scholar 

  • 52.

    Fox, J. & Hong, J. Effect displays in r for multinomial and proportional-odds logit models: extensions to the effects package. J. Stat. Softw. 32, 1–24 (2009).

    Article  Google Scholar 

  • 53.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2016).


  • Source: Ecology - nature.com

    Stoichiometric niche, nutrient partitioning and resource allocation in a solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92