Hotez, P. J. et al. The Global Burden of Disease Study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl. Trop. Dis. 8, e2865 (2014).
World Health Organization. Prevention and Control of Schistosomiasis and Soil-transmitted Helminthiasis: Report of a WHO Expert Committee (World Health Organization, 2002).
Montresor, A., Engels, D., Ramsan, M., Foum, A. & Savioli, L. Field test of the ‘dose pole’ for praziquantel in Zanzibar. Trans. R. Soc. Trop. Med. Hyg. 96, 323–324 (2002).
Google Scholar
World Health Organization. Helminth Control in School-aged Children: A Guide for Managers of Control Programmes (World Health Organisation, 2006).
World Health Organization. Schistosomiasis and soil-transmitted helminthiases: numbers of people treated in 2019. Wkly. Epidemiol. Rec. 95, 629–640 (2020).
Kabatereine, N. B. et al. Impact of a national helminth control programme on infection and morbidity in Ugandan schoolchildren. Bull. World Health Organ 85, 91–99 (2007).
Google Scholar
Bronzan, R. N. et al. Impact of community-based integrated mass drug administration on schistosomiasis and soil-transmitted helminth prevalence in Togo. PLoS Negl. Trop. Dis. 12, e0006551 (2018).
Google Scholar
Deol, A. K. et al. Schistosomiasis—assessing progress toward the 2020 and 2025 global goals. N. Engl. J. Med. 381, 2519–2528 (2019).
World Health Organization. Accelerating work to overcome the global impact of neglected tropical diseases: a roadmap for implementation. https://apps.who.int/iris/bitstream/handle/10665/338712/WHO-HTM-NTD-2012.5-eng.pdf (2012).
World Health Organization. A road map for neglected tropical diseases 2021–2030. https://www.who.int/neglected_diseases/Ending-the-neglect-to-attain-the-SDGs–NTD-Roadmap.pdf (2020).
Mutuku, M. W. et al. A search for snail-related answers to explain differences in response of Schistosoma mansoni to praziquantel treatment among responding and persistent hotspot villages along the Kenyan shore of Lake Victoria. Am. J. Tropical Med. Hyg. 101, 65–77 (2019).
Google Scholar
Assaré, R. K. et al. Characteristics of persistent hotspots of Schistosoma mansoni in western Côte d’Ivoire. Parasit. Vectors 13, 337 (2020).
Google Scholar
Kittur, N. et al. Persistent hotspots in schistosomiasis consortium for operational research and evaluation studies for gaining and sustaining control of schistosomiasis after four years of mass drug administration of praziquantel. Am. J. Trop. Med. Hyg. 101, 617–627 (2019).
Google Scholar
Wiegand, R. E. et al. A persistent hotspot of Schistosoma mansoni infection in a five-year randomized trial of praziquantel preventative chemotherapy strategies. J. Infect. Dis. 216, 1425–1433 (2017).
Google Scholar
Hedtke, S. M. et al. Genomic epidemiology in filarial nematodes: transforming the basis for elimination program decisions. Front. Genet. 10, 1282 (2019).
Google Scholar
Doyle, S. R. & Cotton, J. A. Genome-wide approaches to investigate anthelmintic resistance. Trends Parasitol. 35, 289–301 (2019).
Google Scholar
Crellen, T. et al. Whole genome resequencing of the human parasite Schistosoma mansoni reveals population history and effects of selection. Sci. Rep. 6, 1–13 (2016).
Google Scholar
Gower, C. M. et al. Population genetic structure of Schistosoma mansoni and Schistosoma haematobium from across six sub-Saharan African countries: implications for epidemiology, evolution and control. Acta Trop. 128, 261–274 (2013).
Google Scholar
Standley, C., Kabatereine, N., Lange, C., Lwambo, N. & Stothard, J. Molecular epidemiology and phylogeography of Schistosoma mansoni around Lake Victoria. Parasitology 137, 1937–1949 (2010).
Google Scholar
Faust, C. L. et al. Two-year longitudinal survey reveals high genetic diversity of Schistosoma mansoni with adult worms surviving praziquantel treatment at the start of mass drug administration in Uganda. Parasit. Vectors 12, 607 (2019).
Google Scholar
Stothard, J. R. et al. Molecular epidemiology of Schistosoma mansoni in Uganda: DNA barcoding reveals substantial genetic diversity within Lake Albert and Lake Victoria populations. Parasitology 136, 1813–1824 (2009).
Google Scholar
Norton, A. J. et al. Genetic consequences of mass human chemotherapy for Schistosoma mansoni: population structure pre- and post-praziquantel treatment in Tanzania. Am. J. Trop. Med. Hyg. 83, 951–957 (2010).
Google Scholar
Blanton, R. E. et al. Schistosoma mansoni population structure and persistence after praziquantel treatment in two villages of Bahia, Brazil. Int. J. Parasitol. 41, 1093–1099 (2011).
Google Scholar
Gower, C. M. et al. Phenotypic and genotypic monitoring of Schistosoma mansoni in Tanzanian schoolchildren five years into a preventative chemotherapy national control programme. Parasit. Vectors 10, 593 (2017).
Google Scholar
Chevalier, F. D. et al. Oxamniquine resistance alleles are widespread in Old World Schistosoma mansoni and predate drug deployment. PLoS Pathog. 15, e1007881 (2019).
Google Scholar
Platt, R. N. et al. Ancient hybridization and adaptive introgression of an invadolysin gene in schistosome parasites. Mol. Biol. Evol. 36, 2127–2142 (2019).
Google Scholar
Shortt, J. A. et al. Population genomic analyses of schistosome parasites highlight critical challenges facing endgame elimination efforts. Sci. Rep. 11, 6884 (2021).
Google Scholar
Truscott, J. E. et al. A comparison of two mathematical models of the impact of mass drug administration on the transmission and control of schistosomiasis. Epidemics 18, 29–37 (2017).
Google Scholar
Bouzat, J. L. Conservation genetics of population bottlenecks: the role of chance, selection, and history. Conserv. Genet. 11, 463–478 (2010).
Google Scholar
Andrews, P. Praziquantel: mechanisms of anti-schistosomal activity. Pharmacol. Ther. 29, 129–156 (1985).
Google Scholar
Cioli, D. & Pica-Mattoccia, L. Praziquantel. Parasitol. Res. 90, S3–S9 (2003).
Caffrey, C. R. Schistosomiasis and its treatment. Future Med. Chem. 7, 675–676 (2015).
Google Scholar
Kaplan, R. M. & Vidyashankar, A. N. An inconvenient truth: global worming and anthelmintic resistance. Vet. Parasitol. 186, 70–78 (2012).
Google Scholar
Rose, H. et al. Widespread anthelmintic resistance in European farmed ruminants: a systematic review. Vet. Rec. 176, 546 (2015).
Google Scholar
Schwab, A. E., Boakye, D. A., Kyelem, D. & Prichard, R. K. Detection of benzimidazole resistance-associated mutations in the filarial nematode Wuchereria bancrofti and evidence for selection by albendazole and ivermectin combination treatment. Am. J. Trop. Med. Hyg. 73, 234–238 (2005).
Google Scholar
Fallon, P. G. & Doenhoff, M. J. Drug-resistant schistosomiasis: resistance to praziquantel and oxamniquine induced in Schistosoma mansoni in mice is drug specific. Am. J. Trop. Med. Hyg. 51, 83–88 (1994).
Google Scholar
Couto, F. F. B. et al. Schistosoma mansoni: a method for inducing resistance to praziquantel using infected Biomphalaria glabrata snails. Mem. Inst. Oswaldo Cruz 106, 153–157 (2011).
Google Scholar
Mwangi, I. N. et al. Praziquantel sensitivity of Kenyan Schistosoma mansoni isolates and the generation of a laboratory strain with reduced susceptibility to the drug. Int. J. Parasitol. Drugs Drug Resist. 4, 296–300 (2014).
Google Scholar
Lamberton, P. H. L., Faust, C. L. & Webster, J. P. Praziquantel decreases fecundity in Schistosoma mansoni adult worms that survive treatment: evidence from a laboratory life-history trade-offs selection study. Infect. Dis. Poverty 6, 110 (2017).
Google Scholar
Stelma, F. F. et al. Efficacy and side effects of praziquantel in an epidemic focus of Schistosoma mansoni. Am. J. Trop. Med. Hyg. 53, 167–170 (1995).
Google Scholar
Melman, S. D. et al. Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of Schistosoma mansoni. PLoS Negl. Trop. Dis. 3, e504 (2009).
Google Scholar
Crellen, T. et al. Reduced efficacy of praziquantel against Schistosoma mansoni is associated with multiple rounds of mass drug administration. Clin. Infect. Dis. 63, 1151–1159 (2016).
Google Scholar
King, C. H., Muchiri, E. M. & Ouma, J. H. Evidence against rapid emergence of praziquantel resistance in Schistosoma haematobium, Kenya. Emerg. Infect. Dis. 6, 585–594 (2000).
Google Scholar
Gryseels, B. et al. Are poor responses to praziquantel for the treatment of Schistosoma mansoni infections in Senegal due to resistance? An overview of the evidence. Trop. Med. Int. Health 6, 864–873 (2001).
Google Scholar
Fenwick, A. & Webster, J. P. Schistosomiasis: challenges for control, treatment and drug resistance. Curr. Opin. Infect. Dis. 19, 577–582 (2006).
Google Scholar
Albonico, M. et al. Monitoring the efficacy of drugs for neglected tropical diseases controlled by preventive chemotherapy. J. Glob. Antimicrob. Resist 3, 229–236 (2015).
Google Scholar
Fukushige, M., Chase-Topping, M., Woolhouse, M. E. J. & Mutapi, F. Efficacy of praziquantel has been maintained over four decades (from 1977 to 2018): a systematic review and meta-analysis of factors influence its efficacy. PLoS Negl. Trop. Dis. 15, e0009189 (2021).
Google Scholar
Hodgkinson, J. E. et al. Refugia and anthelmintic resistance: concepts and challenges. Int. J. Parasitol. Drugs Drug Resist. 10, 51–57 (2019).
Google Scholar
Walker, M. et al. New approaches to measuring anthelminthic drug efficacy: parasitological responses of childhood schistosome infections to treatment with praziquantel. Parasit. Vectors 9, 41 (2016).
Google Scholar
Kittur, N. et al. Defining persistent hotspots: areas that fail to decrease meaningfully in prevalence after multiple years of mass drug administration with praziquantel for control of schistosomiasis. Am. J. Trop. Med. Hyg. 97, 1810–1817 (2017).
Google Scholar
Levecke, B. et al. Evaluation of the therapeutic efficacy of praziquantel against schistosomes in seven countries with ongoing large-scale deworming programs. Int. J. Parasitol. Drugs Drug Resist. 14, 183–187 (2020).
Google Scholar
Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 29, 1–10 (1975).
Google Scholar
Gattepaille, L. M., Jakobsson, M. & Blum, M. G. B. Inferring population size changes with sequence and SNP data: lessons from human bottlenecks. Heredity 110, 409–419 (2013).
Google Scholar
Kohn, A. B., Anderson, P. A. V., Roberts-Misterly, J. M. & Greenberg, R. M. Schistosome Calcium Channel β Subunits: unusual modulatory effects and potential role in the action of the antischistosomal drug praziquantel. J. Biol. Chem. 276, 36873–36876 (2001).
Google Scholar
Greenberg, R. M. Are Ca2+ channels targets of praziquantel action? Int. J. Parasitol. 35, 1–9 (2005).
Google Scholar
Pica-Mattoccia, L. et al. Cytochalasin D abolishes the schistosomicidal activity of praziquantel. Exp. Parasitol. 115, 344–351 (2007).
Google Scholar
Nogi, T., Zhang, D., Chan, J. D. & Marchant, J. S. A novel biological activity of praziquantel requiring voltage-operated Ca2+ channel β subunits: subversion of flatworm regenerative polarity. PLoS Negl. Trop. Dis. 3, e464 (2009).
Google Scholar
Kohn, A. B., Roberts-Misterly, J. M., Anderson, P. A. V., Khan, N. & Greenberg, R. M. Specific sites in the Beta Interaction Domain of a schistosome Ca2+ channel beta subunit are key to its role in sensitivity to the anti-schistosomal drug praziquantel. Parasitology 127, 349–356 (2003).
Google Scholar
Valle, C. et al. Sequence and level of endogenous expression of calcium channel β subunits in Schistosoma mansoni displaying different susceptibilities to praziquantel. Mol. Biochem. Parasitol. 130, 111–115 (2003).
Google Scholar
Park, S.-K. et al. The anthelmintic drug praziquantel activates a schistosome transient receptor potential channel. J. Biol. Chem. https://doi.org/10.1074/jbc.AC119.011093 (2019).
Park, S.-K. et al. Mechanism of praziquantel action at a parasitic flatworm ion channel. Preprint at bioRxiv https://doi.org/10.1101/2021.03.09.434291 (2021).
Le Clec’h, W., Chevalier, F. D., Mattos, A. C. A. & Strickland, A. Genetic analysis of praziquantel resistance in schistosome parasites implicates a Transient Receptor Potential channel. Preprint at bioRxiv https://doi.org/10.1101/2021.06.09.447779 (2021).
Standley, C. et al. Intestinal schistosomiasis and soil-transmitted helminthiasis in Ugandan schoolchildren: a rapid mapping assessment. Geospat. Health 4, 39–53 (2009).
Google Scholar
Steinauer, M. L., Hanelt, B., Agola, L. E., Mkoji, G. M. & Loker, E. S. Genetic structure of Schistosoma mansoni in western Kenya: the effects of geography and host sharing. Int. J. Parasitol. 39, 1353–1362 (2009).
Google Scholar
Agola, L. E. et al. Genetic diversity and population structure of Schistosoma mansoni within human infrapopulations in Mwea, central Kenya assessed by microsatellite markers. Acta Trop. 111, 219–225 (2009).
Google Scholar
Gower, C. M. et al. Population genetics of Schistosoma haematobium: development of novel microsatellite markers and their application to schistosomiasis control in Mali. Parasitology 138, 978–994 (2011).
Google Scholar
Betson, M., Sousa-Figueiredo, J. C., Kabatereine, N. B. & Stothard, J. R. New insights into the molecular epidemiology and population genetics of Schistosoma mansoni in Ugandan pre-school children and mothers. PLoS Negl. Trop. Dis. 7, e2561 (2013).
Google Scholar
Van den Broeck, F. et al. Inbreeding within human Schistosoma mansoni: do host-specific factors shape the genetic composition of parasite populations? Heredity 113, 32–41 (2014).
Google Scholar
Thiele, E. A., Sorensen, R. E., Gazzinelli, A. & Minchella, D. J. Genetic diversity and population structuring of Schistosoma mansoni in a Brazilian village. Int. J. Parasitol. 38, 389–399 (2008).
Google Scholar
Kebede, T., Negash, Y. & Erko, B. Schistosoma mansoni infection in human and nonhuman primates in selected areas of Oromia Regional State, Ethiopia. J. Vector Borne Dis. 55, 116–121 (2018).
Google Scholar
Aemero, M. et al. Genetic diversity, multiplicity of infection and population structure of Schistosoma mansoni isolates from human hosts in Ethiopia. BMC Genet. 16, 137 (2015).
Google Scholar
Neves, M. I., Webster, J. P. & Walker, M. Estimating helminth burdens using sibship reconstruction. Parasit. Vectors 12, 441 (2019).
Google Scholar
Mawa, P. A., Kincaid-Smith, J., Tukahebwa, E. M., Webster, J. P. & Wilson, S. Schistosomiasis morbidity hotspots: roles of the human host, the parasite and their interface in the development of severe morbidity. Front. Immunol. 12, 751 (2021).
Theron, A., Sire, C., Rognon, A., Prugnolle, F. & Durand, P. Molecular ecology of Schistosoma mansoni transmission inferred from the genetic composition of larval and adult infrapopulations within intermediate and definitive hosts. Parasitology 129, 571–585 (2004).
Google Scholar
Parker, M. et al. Border parasites: schistosomiasis control among Uganda’s fisherfolk. J. East. Afr. Stud. 6, 98–123 (2012).
Google Scholar
Messer, P. W. & Petrov, D. A. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol. Evol. 28, 659–669 (2013).
Google Scholar
Gilleard, J. S. & Redman, E. Genetic diversity and population structure of haemonchus contortus. Adv. Parasitol. 93, 31–68 (2016).
Google Scholar
Huyse, T. et al. Regular treatments of praziquantel do not impact on the genetic make-up of Schistosoma mansoni in Northern Senegal. Infect. Genet. Evol. 18, 100–105 (2013).
Google Scholar
Lelo, A. E. et al. No apparent reduction in schistosome burden or genetic diversity following four years of school-based mass drug administration in mwea, central kenya, a heavy transmission area. PLoS Negl. Trop. Dis. 8, e3221 (2014).
Google Scholar
French, M. D. et al. Reductions in genetic diversity of Schistosoma mansoni populations under chemotherapeutic pressure: the effect of sampling approach and parasite population definition. Acta Trop. 128, 196–205 (2013).
Google Scholar
Van den Broeck, F., Vanoverbeeke, J., Polman, K. & Huyse, T. A Darwinian outlook on schistosomiasis elimination. Preprint at bioRxiv. https://doi.org/10.1101/2020.10.28.358523 (2020).
Hayeshi, R., Masimirembwa, C., Mukanganyama, S. & Ungell, A.-L. B. The potential inhibitory effect of antiparasitic drugs and natural products on P-glycoprotein mediated efflux. Eur. J. Pharm. Sci. 29, 70–81 (2006).
Google Scholar
Hines-Kay, J. et al. Transcriptional analysis of Schistosoma mansoni treated with praziquantel in vitro. Mol. Biochem. Parasitol. 186, 87–94 (2012).
Google Scholar
Lespine, A., Ménez, C., Bourguinat, C. & Prichard, R. K. P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: prospects for reversing transport-dependent anthelmintic resistance. Int. J. Parasitol. Drugs Drug Resist. 2, 58–75 (2012).
Google Scholar
Greenberg, R. M. ABC multidrug transporters in schistosomes and other parasitic flatworms. Parasitol. Int. 62, 647–653 (2013).
Google Scholar
Hermisson, J. & Pennings, P. S. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 169, 2335–2352 (2005).
Google Scholar
Redman, E. et al. The emergence of resistance to the benzimidazole anthlemintics in parasitic nematodes of livestock is characterised by multiple independent hard and soft selective sweeps. PLoS Neglected Tropical Dis. 9, e0003494 (2015).
Google Scholar
Doyle, S. R. et al. Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity. PLoS Negl. Trop. Dis. 11, e0005816 (2017).
Google Scholar
Choi, Y.-J. et al. Genomic introgression mapping of field-derived multiple-anthelmintic resistance in Teladorsagia circumcincta. PLoS Genet. 13, e1006857 (2017).
Google Scholar
Chami, G. F. et al. Influence of Schistosoma mansoni and hookworm infection intensities on anaemia in Ugandan villages. PLoS Negl. Trop. Dis. 9, e0004193 (2015).
Google Scholar
Adriko, M. et al. Impact of a national deworming campaign on the prevalence of soil-transmitted helminthiasis in Uganda (2004–2016): implications for national control programs. PLoS Negl. Trop. Dis. 12, e0006520 (2018).
Google Scholar
Webster, J. P., Gower, C. M. & Norton, A. J. Evolutionary concepts in predicting and evaluating the impact of mass chemotherapy schistosomiasis control programmes on parasites and their hosts. Evol. Appl. 1, 66–83 (2008).
Google Scholar
Leathwick, D. M., Ganesh, S. & Waghorn, T. S. Evidence for reversion towards anthelmintic susceptibility in Teladorsagia circumcincta in response to resistance management programmes. Int. J. Parasitol. Drugs Drug Resist. 5, 9–15 (2015).
Google Scholar
Kenyon, F. et al. The role of targeted selective treatments in the development of refugia-based approaches to the control of gastrointestinal nematodes of small ruminants. Vet. Parasitol. 164, 3–11 (2009).
Google Scholar
Chabasse, D., Bertrand, G., Leroux, J. P., Gauthey, N. & Hocquet, P. Developmental bilharziasis caused by Schistosoma mansoni discovered 37 years after infestation. Bull. Soc. Pathol. Exot. Filiales 78, 643–647 (1985).
Google Scholar
Warren, K. S., Mahmoud, A. A., Cummings, P., Murphy, D. J. & Houser, H. B. Schistosomiasis mansoni in Yemeni in California: duration of infection, presence of disease, therapeutic management. Am. J. Trop. Med. Hyg. 23, 902–909 (1974).
Google Scholar
William, S. et al. Stability and reproductive fitness of Schistosoma mansoni isolates with decreased sensitivity to praziquantel. Int. J. Parasitol. 31, 1093–1100 (2001).
Google Scholar
Viana, M., Faust, C. L., Haydon, D. T., Webster, J. P. & Lamberton, P. H. L. The effects of subcurative praziquantel treatment on life‐history traits and trade‐offs in drug‐resistant Schistosoma mansoni. Evol. Appl. 11, 488–500 (2018).
Google Scholar
Standley, C. J., Goodacre, S. L., Wade, C. M. & Stothard, J. R. The population genetic structure of Biomphalaria choanomphala in Lake Victoria, East Africa: implications for schistosomiasis transmission. Parasit. Vectors 7, 524 (2014).
Google Scholar
Mitta, G. et al. The compatibility between Biomphalaria glabrata snails and Schistosoma mansoni: an increasingly complex puzzle. Adv. Parasitol. 97, 111–145 (2017).
Google Scholar
Rowel, C. et al. Environmental epidemiology of intestinal schistosomiasis in Uganda: population dynamics of Biomphalaria (Gastropoda: Planorbidae) in Lake Albert and Lake Victoria with observations on natural infections with digenetic trematodes. BioMed. Res. Int. 2015, 1–11 (2015).
Google Scholar
Anderson, L. C., Loker, E. S. & Wearing, H. J. Modeling schistosomiasis transmission: the importance of snail population structure. Parasit. Vectors 14, 94 (2021).
Google Scholar
Nikolakis, Z. L. et al. Patterns of relatedness and genetic diversity inferred from whole genome sequencing of archival blood fluke miracidia (Schistosoma japonicum). PLoS Negl. Trop. Dis. 15, e0009020 (2021).
Google Scholar
Kovač, J. et al. Pharmacokinetics of praziquantel in Schistosoma mansoni– and Schistosoma haematobium-infected school- and preschool-aged children. Antimicrob. Agents Chemother. 62, e02253-17 (2018).
Secor, W. E. Faculty opinions recommendation of sensitivity and specificity of multiple Kato-Katz thick smears and a circulating cathodic antigen test for Schistosoma mansoni diagnosis pre- and post-repeated-praziquantel treatment. Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature. https://doi.org/10.3410/f.718871676.793510451 (2015).
Stothard, J. R., Sousa-Figueiredo, J. C. & Navaratnam, A. M. D. Advocacy, policies and practicalities of preventive chemotherapy campaigns for African children with schistosomiasis. Expert Rev. Anti. Infect. Ther. 11, 733–752 (2013).
Google Scholar
Fenwick, A. et al. The Schistosomiasis Control Initiative (SCI): rationale, development and implementation from 2002–2008. Parasitology 136, 1719–1730 (2009).
Google Scholar
Colley, D. G., Bustinduy, A. L., Secor, W. E. & King, C. H. Human schistosomiasis. Lancet 383, 2253–2264 (2014).
Google Scholar
Crellen, T. et al. Schistosoma mansoni egg count reduction data, Ugandan Primary Schools 2014. https://doi.org/10.13140/RG.2.2.12687.84640 (2018).
Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
Google Scholar
Emery, A. M., Allan, F. E., Rabone, M. E. & Rollinson, D. Schistosomiasis collection at NHM (SCAN). Parasites Vectors 5, 1 (2012).
Google Scholar
Howe, K. L., Bolt, B. J., Shafie, M., Kersey, P. & Berriman, M. WormBase ParaSite—a comprehensive resource for helminth genomics. Mol. Biochem. Parasitol. 215, 2–10 (2017).
Google Scholar
Protasio, A. V. et al. A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl. Trop. Dis. 6, e1455 (2012).
Google Scholar
Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).
Google Scholar
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
Google Scholar
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
Google Scholar
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
Google Scholar
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
Google Scholar
Gómez-Rubio, V. ggplot2—elegant graphics for data analysis (2nd edn). J. Stat. Softw., Book Rev. 77, 1–3 (2017).
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
Google Scholar
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
Google Scholar
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics https://doi.org/10.1093/bioinformatics/bty633 (2018).
Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).
Google Scholar
Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).
Google Scholar
Korunes, K. L. & Samuk, K. pixy: unbiased estimation of nucleotide diversity and divergence in the presence of missing data. Mol. Ecol. Resour. 21, 1359–1368 (2021).
Google Scholar
Kassambara, A. ggpubr:‘ggplot2’ based publication ready plots. R package version 0.25 (2018).
Criscione, C. D., Valentim, C. L. L., Hirai, H., LoVerde, P. T. & Anderson, T. J. C. Genomic linkage map of the human blood fluke Schistosoma mansoni. Genome Biol. 10, R71 (2009).
Google Scholar
Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).
Google Scholar
Szpiech, Z. A. & Hernandez, R. D. selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Mol. Biol. Evol. 31, 2824–2827 (2014).
Google Scholar
Vitti, J. J., Grossman, S. R. & Sabeti, P. C. Detecting natural selection in genomic data. Annu. Rev. Genet. 47, 97–120 (2013).
Google Scholar
Terhorst, J., Kamm, J. A. & Song, Y. S. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017).
Google Scholar
Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. & Bustamante, C. D. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 5, e1000695 (2009).
Google Scholar
R Core Team. R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna (2013).
Wilke, C. O. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’. R package version 0.7.0 (2016).
Tange, O. GNU Parallel: The Command-Line Power Tool | USENIX. https://www.usenix.org/publications/login/february-2011-volume-36-number-1/gnu-parallel-command-line-power-tool (2011).
Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).
Google Scholar
Berger, D. et al. Data release: Whole-genome sequencing of Schistosoma mansoni reveals extensive diversity with limited selection despite mass drug administration. https://doi.org/10.5281/ZENODO.4940588 (2021).
Berger, D. duncanberger/PZQ_POPGEN. https://doi.org/10.5281/zenodo.4975909 (2021).
Source: Ecology - nature.com