in

Individual US diets show wide variation in water scarcity footprints

  • 1.

    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    PubMed 

    Google Scholar 

  • 2.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Hallstrom, E., Carlsson-Kanyama, A. & Borjesson, P. Environmental impact of dietary change: a systematic review. J. Clean. Prod. 91, 1–11 (2015).

    Google Scholar 

  • 4.

    Kim, B. F. et al. Country-specific dietary shifts to mitigate climate and water crises. Global Environ. Change 62, 101926 (2019).

  • 5.

    Azevedo, L. B., Henderson, A. D., van Zelm, R., Jolliet, O. & Huijbregts, M. A. J. Assessing the importance of spatial variability versus model choices in life cycle impact assessment: the case of freshwater eutrophication in europe. Environ. Sci. Technol. 47, 13565–13570 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations General Assembly, 2015).

  • 7.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Dieter, C. A. et al. Estimated Use of Water in the United States in 2015. Report No 1441 (US Geological Survey, 2018).

  • 9.

    Whitmee, S. et al. Safeguarding human health in the Anthropocene epoch: report of the Rockefeller Foundation–Lancet commission on planetary health. Lancet 386, 1973–2028 (2015).

    PubMed 

    Google Scholar 

  • 10.

    Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 3, 200–208 (2020).

    Google Scholar 

  • 11.

    Boulay, A.-M. et al. The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 23, 368–378 (2018).

    Google Scholar 

  • 12.

    Boulay, A.-M. et al. Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops. Int. J. Life Cycle Assess. 20, 577–583 (2015).

    CAS 

    Google Scholar 

  • 13.

    Tom, M. S., Fischbeck, P. S. & Hendrickson, C. T. Energy use, blue water footprint, and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US. Environ. Syst. Decis. 36, 92–103 (2016).

    Google Scholar 

  • 14.

    Blackstone, N. T., El-Abbadi, N. H., McCabe, M. S., Griffin, T. S. & Nelson, M. E. Linking sustainability to the healthy eating patterns of the Dietary Guidelines for Americans: a modelling study. Lancet Planet. Health 2, e344–e352 (2018).

    PubMed 

    Google Scholar 

  • 15.

    Birney, C. I., Franklin, K. F., Davidson, F. T. & Webber, M. E. An assessment of individual foodprints attributed to diets and food waste in the United States. Environ. Res. Lett. 12, 105008 (2017).

    ADS 

    Google Scholar 

  • 16.

    Gephart, J. A. et al. The environmental cost of subsistence: optimizing diets to minimize footprints. Sci. Total Environ. 553, 120–127 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Mekonnen, M. M. & Fulton, J. The effect of diet changes and food loss reduction in reducing the water footprint of an average American. Water Int. 43, 860–870 (2018).

    Google Scholar 

  • 18.

    Blas, A., Garrido, A. & Willaarts, B. A. Evaluating the water footprint of the Mediterranean and American diets. Water 8, 448 (2016).

  • 19.

    Rehkamp, S. & Canning, P. Measuring embodied blue water in American diets: an EIO supply chain approach. Ecol. Econ. 147, 179–188 (2018).

    Google Scholar 

  • 20.

    Harris, F. et al. The water footprint of diets: a global systematic review and meta-analysis. Adv. Nutr. 11, 375–386 (2019).

    PubMed Central 

    Google Scholar 

  • 21.

    Vanham, D., Comero, S., Gawlik, B. M. & Bidoglio, G. The water footprint of different diets within European sub-national geographical entities. Nat. Sustain. 1, 518 (2018).

    Google Scholar 

  • 22.

    Vanham, D., Mekonnen, M. M. & Hoekstra, A. Y. The water footprint of the EU for different diets. Ecol. Indicators 32, 1–8 (2013).

    Google Scholar 

  • 23.

    Environmental Management—Water Footprint—Principles, Requirements and Guidelines ISO 14046:2014 (International Organization for Standardization, 2014).

  • 24.

    Ridoutt, B. G., Hendrie, G. A. & Noakes, M. Dietary strategies to reduce environmental impact: a critical review of the evidence base. Adv. Nutr. 8, 933–946 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Quinteiro, P., Ridoutt, B. G., Arroja, L. & Dias, A. C. Identification of methodological challenges remaining in the assessment of a water scarcity footprint: a review. Int. J. Life Cycle Assess. 23, 164–180 (2018).

    Google Scholar 

  • 26.

    Heller, M. C., Willits-Smith, A., Meyer, R., Keoleian, G. A. & Rose, D. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ. Res. Lett. 13, 044004 (2018).

  • 27.

    2015–2020 Dietary Guidelines for Americans (US Department of Health and Human Services & US Department of Agriculture, 2015).

  • 28.

    Willits-Smith, A., Aranda, R., Heller, M. C. & Rose, D. Addressing the carbon footprint, healthfulness, and costs of self-selected diets in the USA: a population-based cross-sectional study. Lancet Planet. Health 4, e98–e106 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Hess, T., Andersson, U., Mena, C. & Williams, A. The impact of healthier dietary scenarios on the global blue water scarcity footprint of food consumption in the UK. Food Policy 50, 1–10 (2015).

    Google Scholar 

  • 30.

    Goldstein, B., Hansen, S. F., Gjerris, M., Laurent, A. & Birkved, M. Ethical aspects of life cycle assessments of diets. Food Policy 59, 139–151 (2016).

    Google Scholar 

  • 31.

    Hess, T., Chatterton, J., Daccache, A. & Williams, A. The impact of changing food choices on the blue water scarcity footprint and greenhouse gas emissions of the British diet: the example of potato, pasta and rice. J. Clean. Prod. 112, 4558–4568 (2016).

    Google Scholar 

  • 32.

    Notarnicola, B., Tassielli, G., Renzulli, P. A., Castellani, V. & Sala, S. Environmental impacts of food consumption in Europe. J. Clean. Prod. 140, 753–765 (2017).

    Google Scholar 

  • 33.

    Heller, M. C. et al. Environmental analyses to inform transitions to sustainable diets in developing countries: case studies for Vietnam and Kenya. Int. J. Life Cycle Assess. 25, 1183–1196 (2020).

    Google Scholar 

  • 34.

    Ridoutt, B. G., Baird, D., Anastasiou, K. & Hendrie, G. A. Diet quality and water scarcity: evidence from a large Australian population health survey. Nutrients 11, 1846 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • 35.

    Kim, B. F. et al. Country-specific dietary shifts to mitigate climate and water crises. Global Environ. Change 62, 101926 (2020).

    Google Scholar 

  • 36.

    Mekonnen, M. M. & Hoekstra, A. Y. A global assessment of the water footprint of farm animal products. Ecosystems 15, 401–415 (2012).

    CAS 

    Google Scholar 

  • 37.

    Meier, T. & Christen, O. Environmental impacts of dietary recommendations and dietary styles: Germany as an example. Environ. Sci. Technol. 47, 877–888 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).

    ADS 

    Google Scholar 

  • 39.

    Zhuo, L., Mekonnen, M. M. & Hoekstra, A. Y. Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin. Hydrol. Earth Syst. Sci. 18, 2219–2234 (2014).

    ADS 

    Google Scholar 

  • 40.

    World Economic Forum Water Initiative Water Security: The Water–Food–Energy–Climate Nexus (Island Press, 2011).

  • 41.

    Bazilian, M. et al. Considering the energy, water and food nexus: towards an integrated modelling approach. Energy Policy 39, 7896–7906 (2011).

    Google Scholar 

  • 42.

    Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M. & Mekonnen, M. M. The Water Footprint Assessment Manual: Setting the Global Standard (Earthscan, 2011).

  • 43.

    Jefferies, D. et al. Water footprint and life cycle assessment as approaches to assess potential impacts of products on water consumption. Key learning points from pilot studies on tea and margarine. J. Clean. Prod. 33, 155–166 (2012).

    Google Scholar 

  • 44.

    Lovarelli, D., Bacenetti, J. & Fiala, M. Water footprint of crop productions: a review. Sci. Total Environ. 548–549, 236–251 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • 45.

    Chenoweth, J., Hadjikakou, M. & Zoumides, C. Quantifying the human impact on water resources: a critical review of the water footprint concept. Hydrol. Earth Syst. Sci. 18, 2325–2342 (2014).

    ADS 

    Google Scholar 

  • 46.

    Ridoutt, B. G. & Pfister, S. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Global Environ. Change 20, 113–120 (2010).

    Google Scholar 

  • 47.

    Ridoutt, B. G. & Huang, J. Environmental relevance—the key to understanding water footprints. Proc. Natl Acad. Sci. USA 109, E1424–E1424 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Pfister, S. et al. Understanding the LCA and ISO water footprint: a response to Hoekstra (2016) ‘A critique on the water-scarcity weighted water footprint in LCA’. Ecol. Indic. 72, 352–359 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    2018 Irrigation and Water Management Survey (USDA, 2019).

  • 50.

    Pfister, S. & Bayer, P. Monthly water stress: spatially and temporally explicit consumptive water footprint of global crop production. J. Clean. Prod. 73, 52–62 (2014).

    Google Scholar 

  • 51.

    Pfister, S. & Bayer, P. Water Consumption of Crop on Watershed Level (Blue and Green Water, Uncertainty, incl. Shapefile) https://doi.org/10.17632/brn4xm47jk.1 (2017).

  • 52.

    Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, GB1003 (2008).

  • 53.

    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycles 22, GB1022 (2008).

  • 54.

    Mekonnen, M. M. & Hoekstra, A. Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products (UNESCO-IHE, 2010).

    Google Scholar 

  • 55.

    Hoekstra, A. Y. A critique on the water-scarcity weighted water footprint in LCA. Ecol. Indic. 66, 564–573 (2016).

    Google Scholar 

  • 56.

    Hoekstra, A. Y. Water footprint assessment: evolvement of a new research field. Water Resour. Manage. 31, 3061–3081 (2017).

    Google Scholar 

  • 57.

    Caldeira, C. et al. Water footprint profile of crop-based vegetable oils and waste cooking oil: comparing two water scarcity footprint methods. J. Cleaner Prod. 195, 1190–1202 (2018).

    Google Scholar 

  • 58.

    Boulay, A.-M., Benini, L. & Sala, S. Marginal and non-marginal approaches in characterization: how context and scale affect the selection of an adequate characterization model. The AWARE model example. Int. J. Life Cycle Assess. 25, 2380–2392 (2020).

  • 59.

    Forin, S., Berger, M. & Finkbeiner, M. Comment to ‘Marginal and non-marginal approaches in characterization: how context and scale affect the selection of an adequate characterization factor. The AWARE model example’. Int. J. Life Cycle Assess. 25, 663–666 (2020).

    Google Scholar 

  • 60.

    Boulay, A.-M. & Lenoir, L. Sub-national regionalisation of the AWARE indicator for water scarcity footprint calculations. Ecol. Indic. 111, 106017 (2020).

    Google Scholar 

  • 61.

    Rotz, C. A., Asem-Hiablie, S., Place, S. & Thoma, G. Environmental footprints of beef cattle production in the United States. Agric. Syst. 169, 1–13 (2019).

    Google Scholar 

  • 62.

    Peters, C. J., Picardy, J. A., Darrouzet-Nardi, A. & Griffin, T. S. Feed conversions, ration compositions, and land use efficiencies of major livestock products in US agricultural systems. Agric. Syst. 130, 35–43 (2014).

    Google Scholar 

  • 63.

    Peters, C. J. et al. Carrying capacity of US agricultural land: ten diet scenarios. Elementa 4, 000116 (2016).

  • 64.

    Census of Agriculture Farm and Ranch Irrigation Survey (USDA NASS, 2013).

  • 65.

    Aquaculture Trade Tables (USDA Economic Research Service, 2018).

  • 66.

    Pahlow, M., Van Oel, P., Mekonnen, M. & Hoekstra, A. Y. Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production. Sci. Total Environ. 536, 847–857 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Rose, D., Heller, M. C., Willits-Smith, A. M. & Meyer, R. J. Carbon footprint of self-selected US diets: nutritional, demographic, and behavioral correlates. Am. J. Clin. Nutr. 108, 1–9 (2019).

    Google Scholar 

  • 68.

    NHANES: 2005–2006 Data Documentation, Codebook and Frequencies (National Center for Health Statistics and Centers for Disease Control, 2008).


  • Source: Resources - nature.com

    Legacies of Indigenous land use shaped past wildfire regimes in the Basin-Plateau Region, USA

    Combined effects of crude oil exposure and warming on eggs and larvae of an arctic forage fish