Housman, G. et al. Drug resistance in cancer: An overview. Cancers 6(3), 1769 (2014).
Google Scholar
Vasan, N. Baselga, J. & Hyman, D. M. A View on Drug Resistance in Cancer, 11 (2019).
Casás-Selves, M. & Degregori, J. How cancer shapes evolution and how evolution shapes cancer (2011).
Dujon, A. M. et al. Identifying key questions in the ecology and evolution of cancer. Evol. Appl. 14, 4 (2021).
Korolev, K. S., Xavier, J. B. & Gore, J. Turning ecology and evolution against cancer (2014).
Merlo, L. M. F., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6(12), 924–935 (2006).
Google Scholar
Ujvari, B., Roche, B. & Thomas, F. Ecology and Evolution of Cancer 1st edn. (Academic Press, 2017).
Brown, R. L. What evolvability really is. Brit. J. Philos. Sci. 65, 3 (2014).
Google Scholar
Crother, B. I. & Murray, C. M. Early usage and meaning of evolvability. Ecol. Evol. 9, 7 (2019).
Google Scholar
Pigliucci, M. Is evolvability evolvable? (2008).
Sniegowski, P. D. & Murphy, H. A. Evolvability (2006).
Bukkuri, A. & Brown, J. S. Evolutionary game theory: Darwinian dynamics and the G function approach. MDPI Games 12(4), 1–19 (2021).
Google Scholar
Fisher, R. A. The Genetical Theory of Natural Selection (The Clarendon Press, 1930).
Google Scholar
Li, C. C. Fundamental theorem of natural selection. Nature 214(5087), 4 (1967).
Google Scholar
Vincent, T. L. & Brown, J. S. Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics (Cambridge University Press, 2005).
Google Scholar
Hanahan, D. & Weinberg, R. A. The next generation. Leading edge review hallmarks of cancer. Cell 144, 646–674 (2011).
Google Scholar
Pienta, K. J. et al. Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin. Cancer Biol. 20, 1–15 (2020).
Virchow, R. As based upon physiological and pathological histology: Cellular pathology. Nutr. Rev. 47(1), 23–25 (1989).
Google Scholar
Razmik, M., Bonnie, A. & David, M. Roles of polyploid/multinucleated giant cancer cells in metastasis and disease relapse following anticancer treatment. Cancers 10(4), 4 (2018).
Amend, S. R. et al. Polyploid giant cancer cells: Unrecognized actuators of tumorigenesis, metastasis, and resistance. Prostate 79(13), 1489–1497 (2019).
Google Scholar
Kuczler, M. D., Olseen, A. M., Pienta, K. J. & Amend, S. R. ROS-induced cell cycle arrest as a mechanism of resistance in polyaneuploid cancer cells (PACCs). Prog. Biophys. Mol. Biol. 20, 3–7 (2021).
Google Scholar
Kostecka, L. G., Pienta, K. J. & Amend, S. R. Polyaneuploid cancer cell dormancy: Lessons from evolutionary phyla. Front. Ecol. Evol. 9, 439 (2021).
Google Scholar
Rajaraman, R., Rajaraman, M. M., Rajaraman, S. R. & Guernsey, D. L. Neosis—-a paradigm of self-renewal in cancer. Cell Biol. Int. 29(12), 1084–1097 (2005).
Google Scholar
Rajaraman, R., Guernsey, D. L., Rajaraman, M. M. & Rajaraman, S. R. Neosis—a parasexual somatic reduction division in cancer. Int. J. Hum. Genet. 7(1), 29–48 (2007).
Google Scholar
Sundaram, M., Guernsey, D. L., Rajaraman, M. M. & Rajaraman, R. Neosis: A novel type of cell division in cancer. Cancer Biol. Ther. 3(2), 207–218 (2004).
Google Scholar
Illidge, T. M., Cragg, M. S., Fringes, B., Olive, P. & Erenpreisa, J. A. Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol. Int. 24(9), 621–633 (2000).
Google Scholar
Puig, P. E. et al. Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol. Int. 32(9), 1031–1043 (2008).
Google Scholar
Zhang, S. et al. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 33(1), 116–128 (2014).
Google Scholar
Comai, L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6(11), 836–846 (2005).
Google Scholar
Hassel, C., Zhang, B., Dixon, M. & Calvi, B. R. Induction of endocycles represses apoptosis independently of differentiation and predisposes cells to genome instability. Development (Cambridge) 141(1), 112–123 (2014).
Google Scholar
Lee, H. O., Davidson, J. M. & Duronio, R. J. Endoreplication: Polyploidy with purpose. Genes Dev. 23(21), 2461–2477 (2009).
Google Scholar
Basener, W. F. & Sanford, J. C. The fundamental theorem of natural selection with mutations. J. Math. Biol. 76(7), 1589–1622 (2018).
Google Scholar
Frank, S. A. & Slatkin, M. Fisher’s fundamental theorem of natural selection. Trends Ecol. Evol. 7(3), 92–95 (1992).
Google Scholar
Lessard, S. Fisher’s fundamental theorem of natural selection revisited. Theor. Popul. Biol. 52(2), 119–136 (1997).
Google Scholar
Das, P., Mukherjee, S. & Das, P. An investigation on Michaelis–Menten kinetics based complex dynamics of tumor-immune interaction. Chaos Solitons Fractals 1, 28 (2019).
Google Scholar
Renee Fister, K. & Panetta, J. C. Optimal control applied to competing chemotherapeutic cell-kill strategies. SIAM J. Appl. Math. 63, 6 (2003).
Google Scholar
López, Á. G., Seoane, J. M. & Sanjuán, M. A. F. Decay dynamics of tumors. PLoS One 11, 6 (2016).
Pienta, K. J., Hammarlund, E. U., Brown, J. S., Amend, S. R. & Axelrod, R. M. Cancer recurrence and lethality are enabled by enhanced survival and reversible cell cycle arrest of polyaneuploid cells. Proc. Natl. Acad. Sci. U.S.A. 118(7), 2 (2021).
Google Scholar
Pienta, K. J., Hammarlund, E. U., Axelrod, R., Brown, J. S. & Amend, S. R. Poly-aneuploid cancer cells promote evolvability, generating lethal cancer. Evol. Appl. 13(7), 1626–1634 (2020).
Google Scholar
Mittal, K. et al. Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate cancer. Br. J. Cancer 116, 9 (2017).
Google Scholar
Cunningham, J. J., Bukkuri, A., Gatenby, R., Brown, J. S. & Gillies, R. J. Coupled source-sink habitats produce spatial and temporal variation of cancer cell molecular properties as an alternative to branched clonal evolution and stem cell paradigms. Front. Ecol. Evol. 9, 472 (2021).
Google Scholar
Fujiwara, M. & Diaz-Lopez, J. Constructing stage-structured matrix population models from life tables: Comparison of methods. PeerJ 5(10), 1–27 (2017).
Kendall, B. E. et al. Persistent problems in the construction of matrix population models. Ecol. Model. 406, 33–43 (2019).
Google Scholar
Law, R. & Edley, M. T. Transient dynamics of populations with age- and size-dependent vital rates. Ecology 71(5), 1863–1870 (1990).
Google Scholar
Velde, R. V. et al. Resistance to targeted therapies as a multifactorial, gradual adaptation to inhibitor specific selective pressures. Nat. Commun. 11(1), 1–13 (2020).
Google Scholar
Salmina, K. et al. The cancer aneuploidy paradox: In the light of evolution. Genes 10(2), 83 (2019).
Google Scholar
Turajlic, S., Sottoriva, A., Graham, T. & Swanton, C. Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 20(7), 404–416 (2019).
Google Scholar
Miller, A. K., Brown, J. S., Enderling, H., Basanta, D. & Whelan, C. J. The evolutionary ecology of dormancy in nature and in cancer. Front. Ecol. Evol. 9, 5 (2021).
Google Scholar
Geiser, F. Hibernation. Curr. Biol. 23(5), R188–R193 (2013).
Google Scholar
Lyman, C. P. & Chatfield, P. O. Physiology of hibernation in mammals. Physiol. Rev. 35(2), 403–425 (1955).
Google Scholar
Lin, K. C. et al. The role of heterogeneous environment and docetaxel gradient in the emergence of polyploid, mesenchymal and resistant prostate cancer cells. Clin. Exp. Metas. 36(2), 97–108 (2019).
Google Scholar
Lin, K. C. et al. An: In vitro tumor swamp model of heterogeneous cellular and chemotherapeutic landscapes. Lab Chip 20(14), 2453–2464 (2020).
Google Scholar
Kawamura, E. et al. Identification of novel small molecule inhibitors of centrosome clustering in cancer cells. Oncotarget 4(10), 1763–1776 (2013).
Google Scholar
Kostecka, L. G. et al. High KIFC1 expression is associated with poor prognosis in prostate cancer. Med. Oncol. 38, 1–9 (2021).
Google Scholar
Sekino, Y. et al. KIFC1 induces resistance to docetaxel and is associated with survival of patients with prostate cancer. Urol. Oncol. Semin. Original Investig. 35(1), 1–8 (2017).
Google Scholar
Xiao, Y. X. & Yang, W. X. KIFC1: A promising chemotherapy target for cancer treatment?. Oncotarget 7(30), 1–9 (2016).
Law, M. E., Corsino, P. E., Narayan, S. & Law, B. K. Cyclin-dependent kinase inhibitors as anticancer therapeutics. Mol. Pharmacol. 88, 5 (2015).
Google Scholar
Tadesse, S., Caldon, E. C., Tilley, W. & Wang, S. Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update (2019).
Zhang, M. et al. CDK inhibitors in cancer therapy, an overview of recent development. Am. J. Cancer Res. 11, 5 (2021).
Google Scholar
Kostecka, L. G., Pienta, K. J. & Amend, S. R. Lipid droplet evolution gives insight into polyaneuploid cancer cell lipid droplet functions. Med. Oncol. 38(11), 1–10 (2021).
Google Scholar
Strobl, M. A. R. et al. Turnover modulates the need for a cost of resistance in adaptive therapy. Can. Res. 81, 4 (2021).
Google Scholar
West, J., Ma, Y. & Newton, P. K. Capitalizing on competition: An evolutionary model of competitive release in metastatic castration resistant prostate cancer treatment. J. Theor. Biol. 4, 55 (2018).
Google Scholar
Source: Ecology - nature.com