in

A life history model of the ecological and evolutionary dynamics of polyaneuploid cancer cells

  • Housman, G. et al. Drug resistance in cancer: An overview. Cancers 6(3), 1769 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vasan, N. Baselga, J. & Hyman, D. M. A View on Drug Resistance in Cancer, 11 (2019).

  • Casás-Selves, M. & Degregori, J. How cancer shapes evolution and how evolution shapes cancer (2011).

  • Dujon, A. M. et al. Identifying key questions in the ecology and evolution of cancer. Evol. Appl. 14, 4 (2021).

    Google Scholar 

  • Korolev, K. S., Xavier, J. B. & Gore, J. Turning ecology and evolution against cancer (2014).

  • Merlo, L. M. F., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6(12), 924–935 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ujvari, B., Roche, B. & Thomas, F. Ecology and Evolution of Cancer 1st edn. (Academic Press, 2017).

    Google Scholar 

  • Brown, R. L. What evolvability really is. Brit. J. Philos. Sci. 65, 3 (2014).

    MathSciNet 
    Article 

    Google Scholar 

  • Crother, B. I. & Murray, C. M. Early usage and meaning of evolvability. Ecol. Evol. 9, 7 (2019).

    Article 

    Google Scholar 

  • Pigliucci, M. Is evolvability evolvable? (2008).

  • Sniegowski, P. D. & Murphy, H. A. Evolvability (2006).

  • Bukkuri, A. & Brown, J. S. Evolutionary game theory: Darwinian dynamics and the G function approach. MDPI Games 12(4), 1–19 (2021).

    MathSciNet 
    MATH 

    Google Scholar 

  • Fisher, R. A. The Genetical Theory of Natural Selection (The Clarendon Press, 1930).

    MATH 
    Book 

    Google Scholar 

  • Li, C. C. Fundamental theorem of natural selection. Nature 214(5087), 4 (1967).

    Article 

    Google Scholar 

  • Vincent, T. L. & Brown, J. S. Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics (Cambridge University Press, 2005).

    MATH 
    Book 

    Google Scholar 

  • Hanahan, D. & Weinberg, R. A. The next generation. Leading edge review hallmarks of cancer. Cell 144, 646–674 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pienta, K. J. et al. Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin. Cancer Biol. 20, 1–15 (2020).

    Google Scholar 

  • Virchow, R. As based upon physiological and pathological histology: Cellular pathology. Nutr. Rev. 47(1), 23–25 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Razmik, M., Bonnie, A. & David, M. Roles of polyploid/multinucleated giant cancer cells in metastasis and disease relapse following anticancer treatment. Cancers 10(4), 4 (2018).

    Google Scholar 

  • Amend, S. R. et al. Polyploid giant cancer cells: Unrecognized actuators of tumorigenesis, metastasis, and resistance. Prostate 79(13), 1489–1497 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kuczler, M. D., Olseen, A. M., Pienta, K. J. & Amend, S. R. ROS-induced cell cycle arrest as a mechanism of resistance in polyaneuploid cancer cells (PACCs). Prog. Biophys. Mol. Biol. 20, 3–7 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kostecka, L. G., Pienta, K. J. & Amend, S. R. Polyaneuploid cancer cell dormancy: Lessons from evolutionary phyla. Front. Ecol. Evol. 9, 439 (2021).

    Article 

    Google Scholar 

  • Rajaraman, R., Rajaraman, M. M., Rajaraman, S. R. & Guernsey, D. L. Neosis—-a paradigm of self-renewal in cancer. Cell Biol. Int. 29(12), 1084–1097 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rajaraman, R., Guernsey, D. L., Rajaraman, M. M. & Rajaraman, S. R. Neosis—a parasexual somatic reduction division in cancer. Int. J. Hum. Genet. 7(1), 29–48 (2007).

    CAS 
    Article 

    Google Scholar 

  • Sundaram, M., Guernsey, D. L., Rajaraman, M. M. & Rajaraman, R. Neosis: A novel type of cell division in cancer. Cancer Biol. Ther. 3(2), 207–218 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Illidge, T. M., Cragg, M. S., Fringes, B., Olive, P. & Erenpreisa, J. A. Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol. Int. 24(9), 621–633 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Puig, P. E. et al. Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol. Int. 32(9), 1031–1043 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, S. et al. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 33(1), 116–128 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Comai, L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6(11), 836–846 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hassel, C., Zhang, B., Dixon, M. & Calvi, B. R. Induction of endocycles represses apoptosis independently of differentiation and predisposes cells to genome instability. Development (Cambridge) 141(1), 112–123 (2014).

    CAS 
    Article 

    Google Scholar 

  • Lee, H. O., Davidson, J. M. & Duronio, R. J. Endoreplication: Polyploidy with purpose. Genes Dev. 23(21), 2461–2477 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Basener, W. F. & Sanford, J. C. The fundamental theorem of natural selection with mutations. J. Math. Biol. 76(7), 1589–1622 (2018).

    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • Frank, S. A. & Slatkin, M. Fisher’s fundamental theorem of natural selection. Trends Ecol. Evol. 7(3), 92–95 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lessard, S. Fisher’s fundamental theorem of natural selection revisited. Theor. Popul. Biol. 52(2), 119–136 (1997).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • Das, P., Mukherjee, S. & Das, P. An investigation on Michaelis–Menten kinetics based complex dynamics of tumor-immune interaction. Chaos Solitons Fractals 1, 28 (2019).

    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • Renee Fister, K. & Panetta, J. C. Optimal control applied to competing chemotherapeutic cell-kill strategies. SIAM J. Appl. Math. 63, 6 (2003).

    MathSciNet 
    MATH 

    Google Scholar 

  • López, Á. G., Seoane, J. M. & Sanjuán, M. A. F. Decay dynamics of tumors. PLoS One 11, 6 (2016).

    Google Scholar 

  • Pienta, K. J., Hammarlund, E. U., Brown, J. S., Amend, S. R. & Axelrod, R. M. Cancer recurrence and lethality are enabled by enhanced survival and reversible cell cycle arrest of polyaneuploid cells. Proc. Natl. Acad. Sci. U.S.A. 118(7), 2 (2021).

    Article 
    CAS 

    Google Scholar 

  • Pienta, K. J., Hammarlund, E. U., Axelrod, R., Brown, J. S. & Amend, S. R. Poly-aneuploid cancer cells promote evolvability, generating lethal cancer. Evol. Appl. 13(7), 1626–1634 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mittal, K. et al. Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate cancer. Br. J. Cancer 116, 9 (2017).

    Article 
    CAS 

    Google Scholar 

  • Cunningham, J. J., Bukkuri, A., Gatenby, R., Brown, J. S. & Gillies, R. J. Coupled source-sink habitats produce spatial and temporal variation of cancer cell molecular properties as an alternative to branched clonal evolution and stem cell paradigms. Front. Ecol. Evol. 9, 472 (2021).

    Article 

    Google Scholar 

  • Fujiwara, M. & Diaz-Lopez, J. Constructing stage-structured matrix population models from life tables: Comparison of methods. PeerJ 5(10), 1–27 (2017).

    Google Scholar 

  • Kendall, B. E. et al. Persistent problems in the construction of matrix population models. Ecol. Model. 406, 33–43 (2019).

    Article 

    Google Scholar 

  • Law, R. & Edley, M. T. Transient dynamics of populations with age- and size-dependent vital rates. Ecology 71(5), 1863–1870 (1990).

    Article 

    Google Scholar 

  • Velde, R. V. et al. Resistance to targeted therapies as a multifactorial, gradual adaptation to inhibitor specific selective pressures. Nat. Commun. 11(1), 1–13 (2020).

    Article 
    CAS 

    Google Scholar 

  • Salmina, K. et al. The cancer aneuploidy paradox: In the light of evolution. Genes 10(2), 83 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Turajlic, S., Sottoriva, A., Graham, T. & Swanton, C. Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 20(7), 404–416 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Miller, A. K., Brown, J. S., Enderling, H., Basanta, D. & Whelan, C. J. The evolutionary ecology of dormancy in nature and in cancer. Front. Ecol. Evol. 9, 5 (2021).

    Article 

    Google Scholar 

  • Geiser, F. Hibernation. Curr. Biol. 23(5), R188–R193 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lyman, C. P. & Chatfield, P. O. Physiology of hibernation in mammals. Physiol. Rev. 35(2), 403–425 (1955).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lin, K. C. et al. The role of heterogeneous environment and docetaxel gradient in the emergence of polyploid, mesenchymal and resistant prostate cancer cells. Clin. Exp. Metas. 36(2), 97–108 (2019).

    Article 

    Google Scholar 

  • Lin, K. C. et al. An: In vitro tumor swamp model of heterogeneous cellular and chemotherapeutic landscapes. Lab Chip 20(14), 2453–2464 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kawamura, E. et al. Identification of novel small molecule inhibitors of centrosome clustering in cancer cells. Oncotarget 4(10), 1763–1776 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kostecka, L. G. et al. High KIFC1 expression is associated with poor prognosis in prostate cancer. Med. Oncol. 38, 1–9 (2021).

    Article 
    CAS 

    Google Scholar 

  • Sekino, Y. et al. KIFC1 induces resistance to docetaxel and is associated with survival of patients with prostate cancer. Urol. Oncol. Semin. Original Investig. 35(1), 1–8 (2017).

    Article 

    Google Scholar 

  • Xiao, Y. X. & Yang, W. X. KIFC1: A promising chemotherapy target for cancer treatment?. Oncotarget 7(30), 1–9 (2016).

    Google Scholar 

  • Law, M. E., Corsino, P. E., Narayan, S. & Law, B. K. Cyclin-dependent kinase inhibitors as anticancer therapeutics. Mol. Pharmacol. 88, 5 (2015).

    Article 
    CAS 

    Google Scholar 

  • Tadesse, S., Caldon, E. C., Tilley, W. & Wang, S. Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update (2019).

  • Zhang, M. et al. CDK inhibitors in cancer therapy, an overview of recent development. Am. J. Cancer Res. 11, 5 (2021).

    CAS 

    Google Scholar 

  • Kostecka, L. G., Pienta, K. J. & Amend, S. R. Lipid droplet evolution gives insight into polyaneuploid cancer cell lipid droplet functions. Med. Oncol. 38(11), 1–10 (2021).

    Article 
    CAS 

    Google Scholar 

  • Strobl, M. A. R. et al. Turnover modulates the need for a cost of resistance in adaptive therapy. Can. Res. 81, 4 (2021).

    Article 

    Google Scholar 

  • West, J., Ma, Y. & Newton, P. K. Capitalizing on competition: An evolutionary model of competitive release in metastatic castration resistant prostate cancer treatment. J. Theor. Biol. 4, 55 (2018).

    MathSciNet 
    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    A new method boosts wind farms’ energy output, without new equipment

    The overlooked role of a biotin precursor for marine bacteria – desthiobiotin as an escape route for biotin auxotrophy