in

A network simplification approach to ease topological studies about the food-web architecture

  • Ecological networks: Linking structure to dynamics in food webs. (Oxford University Press, 2006).

  • Adaptive food webs: Stability and transitions of real and model ecosystems. (Cambridge University Press, 2018).

  • Pimm, S. L. Food Webs (Springer, 1982).

    Book 

    Google Scholar 

  • Adaptive Food Webs: Stability and Transitions of Real and Model Ecosystems. (Cambridge University Press, 2017). doi:https://doi.org/10.1017/9781316871867.

  • da Mata, A. S. Complex Networks: A Mini-review. Braz. J. Phys. 50, 658–672 (2020).

    ADS 
    Article 

    Google Scholar 

  • Zhang, W. Fundamentals of Network Biology. (World Scientific (Europe), 2018). https://doi.org/10.1142/q0149.

  • Reichman, O. J., Jones, M. B. & Schildhauer, M. P. Challenges and opportunities of open data in ecology. Science 331, 703–705 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Farley, S. S., Dawson, A., Goring, S. J. & Williams, J. W. situating ecology as a big-data science: Current advances, challenges, and solutions. Bioscience 68, 563–576 (2018).

    Article 

    Google Scholar 

  • Osawa, T. Perspectives on biodiversity informatics for ecology. Ecol. Res. 34, 446–456 (2019).

    Article 

    Google Scholar 

  • Shin, N. et al. Toward more data publication of long-term ecological observations. Ecol. Res. 35, 700–707 (2020).

    Article 

    Google Scholar 

  • Pringle, R. M. & Hutchinson, M. C. Resolving food-web structure. Annu. Rev. Ecol. Evol. Syst. 51, 55–80 (2020).

    Article 

    Google Scholar 

  • Derocles, S. A. P. et al. Biomonitoring for the 21st Century: Integrating Next-Generation Sequencing Into Ecological Network Analysis. in Advances in Ecological Research vol. 58 1–62 (Elsevier, 2018).

  • Vacher, C. et al. Learning ecological networks from next-generation sequencing data. in Advances in Ecological Research vol. 54, 1–39 (Elsevier, 2016).

  • Evans, D. M., Kitson, J. J. N., Lunt, D. H., Straw, N. A. & Pocock, M. J. O. Merging DNA metabarcoding and ecological network analysis to understand and build resilient terrestrial ecosystems. Funct. Ecol. 30, 1904–1916 (2016).

    Article 

    Google Scholar 

  • Pocock, M. J. O. et al. A vision for global biodiversity monitoring with citizen science. in Advances in Ecological Research vol. 59, 169–223 (Elsevier, 2018).

  • Sultana, M. & Storch, I. Suitability of open digital species records for assessing biodiversity patterns in cities: A case study using avian records. J. Urban Ecol. 7, juab014 (2021).

    Article 

    Google Scholar 

  • Amano, T., Lamming, J. D. L. & Sutherland, W. J. Spatial gaps in global biodiversity information and the role of citizen science. Bioscience 66, 393–400 (2016).

    Article 

    Google Scholar 

  • Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294 (2017).

    Article 

    Google Scholar 

  • Fontaine, C. et al. The ecological and evolutionary implications of merging different types of networks: Merging networks with different interaction types. Ecol. Lett. 14, 1170–1181 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Martinson, H. M. & Fagan, W. F. Trophic disruption: A meta-analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems. Ecol. Lett. 17, 1178–1189 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Marczak, L. B., Thompson, R. M. & Richardson, J. S. Meta-analysis: Trophic level, Habitat, and productivity shape the food web effects of resource subsidies. Ecology 88, 140–148 (2007).

    PubMed 
    Article 

    Google Scholar 

  • McCary, M. A., Mores, R., Farfan, M. A. & Wise, D. H. Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: A meta-analysis. Ecol. Lett. 19, 328–335 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Cirtwill, A. R., Stouffer, D. B. & Romanuk, T. N. Latitudinal gradients in biotic niche breadth vary across ecosystem types. Proc. R. Soc. B Biol. Sci. 282, 20151589 (2015).

    Article 
    CAS 

    Google Scholar 

  • Fortuna, M. A., Ortega, R. & Bascompte, J. The Web of Life. ArXiv14032575 Q-Bio (2014).

  • Brose, U. et al. Predator traits determine food-web architecture across ecosystems. Nat. Ecol. Evol. 3, 919–927 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Keyes, A. A., McLaughlin, J. P., Barner, A. K. & Dee, L. E. An ecological network approach to predict ecosystem service vulnerability to species losses. Nat. Commun. 12, 1586 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Peng, J. et al. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 644, 781–790 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Su, Y. et al. Modeling the optimal ecological security pattern for guiding the urban constructed land expansions. Urban For. Urban Green. 19, 35–46 (2016).

    Article 

    Google Scholar 

  • Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environ. Pollut. 159, 1974–1983 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Di Marco, M., Watson, J. E. M., Venter, O. & Possingham, H. P. Global biodiversity targets require both sufficiency and efficiency. Conserv. Lett. 9, 395–397 (2016).

    Article 

    Google Scholar 

  • Kim, K.-H. & Pauleit, S. Landscape character, biodiversity and land use planning: The case of Kwangju City Region, South Korea. Land Use Policy 24, 264–274 (2007).

    Article 

    Google Scholar 

  • Young, J. et al. Towards sustainable land use: Identifying and managing the conflicts between human activities and biodiversity conservation in Europe. Biodivers. Conserv. 14, 1641–1661 (2005).

    Article 

    Google Scholar 

  • Dardonville, M., Urruty, N., Bockstaller, C. & Therond, O. Influence of diversity and intensification level on vulnerability, resilience and robustness of agricultural systems. Agric. Syst. 184, 102913 (2020).

    Article 

    Google Scholar 

  • Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Lau, M. K., Borrett, S. R., Baiser, B., Gotelli, N. J. & Ellison, A. M. Ecological network metrics: Opportunities for synthesis. Ecosphere 8, e01900 (2017).

    Article 

    Google Scholar 

  • Newman, M. E. J. Networks. (Oxford University Press, 2018).

  • Levine, S. Several measures of trophic structure applicable to complex food webs. J. Theor. Biol. 83, 195–207 (1980).

    ADS 
    Article 

    Google Scholar 

  • Guimarães, P. R. The structure of ecological networks across levels of organization. Annu. Rev. Ecol. Evol. Syst. 51, 433–460 (2020).

    Article 

    Google Scholar 

  • Dormann, C. F., Frund, J., Bluthgen, N. & Gruber, B. Indices, graphs and null models: Analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).

    Article 

    Google Scholar 

  • Jordán, F., Benedek, Z. & Podani, J. Quantifying positional importance in food webs: A comparison of centrality indices. Ecol. Model. 205, 270–275 (2007).

    Article 

    Google Scholar 

  • Jordán, F., Liu, W. & Davis, A. J. Topological keystone species: Measures of positional importance in food webs. Oikos 112, 535–546 (2006).

    Article 

    Google Scholar 

  • Jordán, F., Okey, T. A., Bauer, B. & Libralato, S. Identifying important species: Linking structure and function in ecological networks. Ecol. Model. 216, 75–80 (2008).

    Article 

    Google Scholar 

  • Jiang, L. Determination of keystone species in CSM food web: A topological analysis of network structure. Netw. Biol. 5, 13 (2015).

    Google Scholar 

  • Abarca-Arenas, L. G., Franco-Lopez, J., Peterson, M. S., Brown-Peterson, N. J. & Valero-Pacheco, E. Sociometric analysis of the role of penaeids in the continental shelf food web off Veracruz. Mexico Based By-catch Fish. Res. 87, 46–57 (2007).

    Google Scholar 

  • Abascal-Monroy, I. M. et al. Functional and structural food web comparison of Terminos Lagoon, Mexico in Three Periods (1980, 1998, and 2011). Estuaries Coasts 39, 1282–1293 (2016).

    Article 

    Google Scholar 

  • McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 10245 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Windsor, F. M. et al. Identifying plant mixes for multiple ecosystem service provision in agricultural systems using ecological networks. J. Appl. Ecol. 58, 2770–2782 (2021).

    Article 

    Google Scholar 

  • Klaise, J. & Johnson, S. The origin of motif families in food webs. Sci. Rep. 7, 16197 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Estrada, E. Characterization of topological keystone species. Ecol. Complex. 4, 48–57 (2007).

    Article 

    Google Scholar 

  • Thompson, R. M. & Townsend, C. R. Impacts on stream food webs of native and exotic forest: An intercontinental comparison. Ecology 84, 145–161 (2003).

    Article 

    Google Scholar 

  • Bascompte, J., Melian, C. J. & Sala, E. Interaction strength combinations and the overfishing of a marine food web. Proc. Natl. Acad. Sci. 102, 5443–5447 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dunne, J. A. et al. The roles and impacts of human hunter-gatherers in North Pacific marine food webs. Sci. Rep. 6, 21179 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gauzens, B., Legendre, S., Lazzaro, X. & Lacroix, G. Food-web aggregation, methodological and functional issues. Oikos 122, 1606–1615 (2013).

    Article 

    Google Scholar 

  • Patonai, K. & Jordán, F. Aggregation of incomplete food web data may help to suggest sampling strategies. Ecol. Model. 352, 77–89 (2017).

    Article 

    Google Scholar 

  • Thompson, R. M. & Townsend, C. R. Is resolution the solution?: The effect of taxonomic resolution on the calculated properties of three stream food webs. Freshw. Biol. 44, 413–422 (2000).

    Article 

    Google Scholar 

  • Abarca-Arenas, L. G. & Ulanowicz, R. E. The effects of taxonomic aggregation on network analysis. Ecol. Model. 149, 285–296 (2002).

    Article 

    Google Scholar 

  • Jordán, F. & Osváth, G. The sensitivity of food web topology to temporal data aggregation. Ecol. Model. 220, 3141–3146 (2009).

    Article 

    Google Scholar 

  • European Commission. Communication from the commission to the european parliament, the council, the european economic and social committee and the committee of the regions: EU Biodiversity Strategy for 2030 Bringing nature back into our lives. Preprint at https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0380 (2020).

  • European Parliament. European Parliament resolution of 9 June 2021 on the EU Biodiversity Strategy for 2030: Bringing nature back into our lives (P9_TA(2021)0277). Preprint at https://www.europarl.europa.eu/doceo/document/TA-9-2021-0277_EN.html (2021).

  • Felson, A. J. & Ellison, A. M. Designing (for) Urban Food Webs. Front. Ecol. Evol. 9, 582041 (2021).

    Article 

    Google Scholar 

  • Warren, P. et al. Urban food webs: Predators, prey, and the people who feed them. Bull. Ecol. Soc. Am. 87, 387–393 (2006).

    Article 

    Google Scholar 

  • De Montis, A., Ganciu, A., Cabras, M., Bardi, A. & Mulas, M. Comparative ecological network analysis: An application to Italy. Land Use Policy 81, 714–724 (2019).

    Article 

    Google Scholar 

  • Poisot, T. et al. Mangal—making ecological network analysis simple. Ecography 39, 384–390 (2016).

    Article 

    Google Scholar 

  • Morris, Z. B., Weissburg, M. & Bras, B. Ecological network analysis of urban–industrial ecosystems. J. Ind. Ecol. 25, 193–204 (2021).

    Article 

    Google Scholar 

  • Chamberlain, S. A. & Szöcs, E. taxize: Taxonomic search and retrieval in R. F1000 Research 2, 191 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using networkX. in Proceedings of the 7th Python in Science Conference (eds. Varoquaux, G., Vaught, T. & Millman, J.) 11–15 (2008).

  • Scotti, M. & Jordán, F. Relationships between centrality indices and trophic levels in food webs. Community Ecol. 11, 59–67 (2010).

    Article 

    Google Scholar 

  • Gouveia, C., Móréh, Á. & Jordán, F. Combining centrality indices: Maximizing the predictability of keystone species in food webs. Ecol. Indic. 126, 107617 (2021).

    Article 

    Google Scholar 

  • Allesina, S. & Pascual, M. Googling Food Webs: Can an Eigenvector Measure Species’ Importance for Coextinctions?. PLoS Comput. Biol. 5, e1000494 (2009).

    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Patro, S. G. K. & Sahu, K. K. Normalization: A preprocessing stage. https://doi.org/10.48550/ARXIV.1503.06462(2015).

  • Reback, J. et al. pandas-dev/pandas: Pandas 1.2.3. (Zenodo, 2021). 10.5281/ZENODO.4572994.

  • Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar 

  • Waskom, M. et al. mwaskom/seaborn: v0.11.1 (December 2020). (Zenodo, 2020). 10.5281/ZENODO.4379347.

  • Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99, 7821–7826 (2002).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 

  • Rosvall, M., Axelsson, D. & Bergstrom, C. T. The map equation. Eur. Phys. J. Spec. Top. 178, 13–23 (2009).

    Article 

    Google Scholar 

  • Gao, P. & Kupfer, J. A. Uncovering food web structure using a novel trophic similarity measure. Ecol. Inform. 30, 110–118 (2015).

    Article 

    Google Scholar 

  • Gauzens, B., Thébault, E., Lacroix, G. & Legendre, S. Trophic groups and modules: Two levels of group detection in food webs. J. R. Soc. Interface 12, 20141176 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rudiger, P. et al. holoviz/holoviews: Version 1.14.2. (Zenodo, 2021). 10.5281/ZENODO.4581995.

  • Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 
    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    A paradigm shift in the quantification of wave energy attenuation due to saltmarshes based on their standing biomass

    Ecosystem size-induced environmental fluctuations affect the temporal dynamics of community assembly mechanisms