Storey, M. et al. Timing of hot spot—Related volcanism and the breakup of Madagascar and India. Science (80-) 267, 852–855 (1995).
Google Scholar
Wilmé, L., Goodman, S. M. & Ganzhorn, J. U. Biogeographic evolution of Madagascar’s microendemic biota. Science (80-) 312, 1063–1065 (2006).
Google Scholar
Myers, N., Mittermeler, R. A., Mittermeler, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
Google Scholar
Vences, M., Wollenberg, K. C., Vieites, D. R. & Lees, D. C. Madagascar as a model region of species diversification. Trends Ecol. Evol. 24, 456–465 (2009).
Google Scholar
Rakotomanana, H., Jenkins, R. K. B. & Ratsimbazafy, J. Conservation challenges for Madagascar in the next decade. In Conservation Biology: Voices from the Tropics (eds Raven, P. H., Sodhi, N. S. & Gibson, L.) 33–39 (Wiley-Blackwell, 2013). https://doi.org/10.1002/9781118679838.ch5.
Jenkins, R. K. B. et al. Extinction risks and the conservation of Madagascar’s reptiles. PLoS ONE 9, 1 – 14 (2014). https://doi.org/10.1371/journal.pone.0100173
Velosoa, J. et al. An integrated research, management, and community conservation program for the Rere (Madagascar Big-headed turtle), Erymnochelys madagascariensis. In Chelonian Research Monographs, Contributions in Turtle and Tortoise Research (eds Rhodin, A. G. J.) 171–177 (Chelonian Research Foundation, 2014). https://doi.org/10.3854/crm.6.a27p171.
Leuteritz, T., Kuchling, G., Garcia, G. & Velosoa, J. Erymnochelys madagascariensis. In Chelonian Research Monographs, Contributions in Turtle and Tortoise Research (eds Rhodin, A. G. J.) 56–58 (Chelonian Research Foundation, 2014). https://doi.org/10.3854/crm.6.a11p56.
Rafeliarisoa, T., Shore, G., Engberg, S., Louis, E. & Brenneman, R. Characterization of 11 microsatellite marker loci in the Malagasy big-headed turtle (Erymnochelys madagascariensis). Mol. Ecol. Notes 6, 1228–1230 (2006).
Google Scholar
Roca, V., García, G. & Montesinos, A. Gastrointestinal helminths found in the three freshwater turtles (Erymnochelys madagascariensis, Pelomedusa subrufa and Pelusios castanoides) from Ankarafantsika National Park, Madagascar. Helminthologia 44, 177–182 (2007).
Google Scholar
Kuchling, G. & Garcia, G. Pelomedusidae, freshwater turtles. In The Natural History of Madagascar (eds Goodman, S. M. & Benstead, J. P.) 956–960 (University of Chicago Press, 2003).
Pedrono, M. & Smith, L. Overview of the natural history of Madagascar’s endemic tortoises and freshwater turtles: Essential components for effective conservation. In Chelonian Research Monographs, Contributions in Turtle and Tortoise Research (eds Rhodin, A. G. J.) 59–66 (Chelonian Research Foundation, 2014). https://doi.org/10.3854/crm.6.a12p59.
Kuchling, G. Population structure, reproductive potential and increasing exploitation of the freshwater turtle Erymnochelys madagascariensis. Biol. Conserv. 43, 107–113 (1988).
Google Scholar
Allnutt, T. F. et al. A method for quantifying biodiversity loss and its application to a 50-year record of deforestation across Madagascar. Conserv. Lett. 1, 173–181 (2008).
Google Scholar
Leuteritz, T., Kuchling, G., Garcia, G. & Velosoa, J. Erymnochelys madagascariensis (errata version published in 2016). The IUCN Red List of Threatened Species. 2008, 1–3 (2008).
Kuchling, G. Concept and design of the Madagascar side-necked turtle Erymnochelys madagascariensis breeding facility at Ampijoroa, Madagascar. Dodo 36, 62–74 (2000).
Witzenberger, K. A. & Hochkirch, A. Ex situ conservation genetics: A review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers. Conserv. 20, 1843–1861 (2011).
Google Scholar
Stanton, D. W. G. et al. Genetic structure of captive and free-ranging okapi (Okapia johnstoni) with implications for management. Conserv. Genet. 16, 1115–1126 (2015).
Google Scholar
Boumans, L., Vieites, D. R., Glaw, F. & Vences, M. Geographical patterns of deep mitochondrial differentiation in widespread Malagasy reptiles. Mol. Phylogenet. Evol. 45, 822–839 (2007).
Google Scholar
Orozco-Terwengel, P., Andreone, F., Louis, E. & Vences, M. Mitochondrial introgressive hybridization following a demographic expansion in the tomato frogs of Madagascar, genus Dyscophus. Mol. Ecol. 22, 6074–6090 (2013).
Google Scholar
Pearson, R. G. & Raxworthy, C. J. The evolution of local endemism in Madagascar: Watershed versus climatic gradient hypotheses evaluated by null biogeographic models. Evolution (New York) 63, 959–967 (2009).
Sunde, J., Yıldırım, Y., Tibblin, P. & Forsman, A. Comparing the performance of microsatellites and RADseq in population genetic studies: Analysis of data for pike (Esox lucius) and a synthesis of previous studies. Front. Genet. 11, 218 (2020).
Google Scholar
Hulce, D., Li, X., Snyder-Leiby, T. & Liu, J. GeneMarker® genotyping software: Tools to increase the statistical power of DNA fragment analysis. J. Biomol. Tech. https://doi.org/10.1002/wps.20394 (2011).
Google Scholar
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
Google Scholar
Carlsson, J. Effects of microsatellite null alleles on assignment testing. J. Hered. 99, 616–623 (2008).
Google Scholar
Bossuyt, F. & Milinkovitch, M. C. Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc. Natl. Acad. Sci. U. S. A. 97, 6585–6590 (2000).
Google Scholar
Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
Google Scholar
Beaumont, M. A. Detecting population expansion and decline using microsatellites. Genetics 153, 2013–2029 (1999).
Google Scholar
Bulut, Z. et al. Microsatellite mutation rates in the eastern tiger salamander (Ambystoma tigrinum tigrinum) differ 10-fold across loci. Genetica 136, 501–504 (2009).
Google Scholar
Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).
Google Scholar
Plummer, M. & Murrell, P. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News. 6, 7–11 (2006).
R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2008). https://doi.org/10.1017/CBO9781107415324.004.
Google Scholar
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 155, 945–959 (2000). https://doi.org/10.1111/j.1471-8286.2007.01758.x.
Puechmaille, S. J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627 (2016).
Google Scholar
Hale, M. L., Burg, T. M. & Steeves, T. E. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7, e45170 (2012).
Google Scholar
Francis, R. M. Pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Res. 17, 27–32 (2017).
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
Google Scholar
Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
Google Scholar
Dieringer, D. & Schlötterer, C. Microsatellite analyser (MSA): A platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167–169 (2003).
Google Scholar
Narum, S. R. Beyond Bonferroni: Less conservative analyses for conservation genetics. Conserv. Genet. 7, 783–787 (2006).
Google Scholar
Goudet, J. FSTAT (version 1.2): A computer program to calculate F-statistics. J. Hered. 86, 485–486 (1995).
Google Scholar
Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
Google Scholar
Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
Google Scholar
Prost, S. & Anderson, C. N. K. TempNet: A method to display statistical parsimony networks for heterochronous DNA sequence data. Methods Ecol. Evol. 2, 663–667 (2011).
Google Scholar
Paquette, S. R. et al. Riverbeds demarcate distinct conservation units of the radiated tortoise (Geochelone radiata) in southern Madagascar. Conserv. Genet. 8, 797–807 (2007).
Google Scholar
Bouchard, C., Tessier, N. & Lapointe, F. J. Watersheds influence the wood turtle’s (Glyptemys insculpta) genetic structure. Conserv. Genet. 20, 653–664 (2019).
Google Scholar
Perlman, S. J., Hodson, C. N., Hamilton, P. T., Opit, G. P. & Gowen, B. E. Maternal transmission, sex ratio distortion, and mitochondria. Proc. Natl. Acad. Sci. U. S. A. 112, 10162–10168 (2015).
Google Scholar
Pearse, D. E. et al. Estimating population structure under nonequilibrium conditions in a conservation context: Continent-wide population genetics of the giant Amazon river turtle, Podocnemis expansa (Chelonia; Podocnemididae). Mol. Ecol. 15, 985–1006 (2006).
Google Scholar
Pearse, D. E. & Avise, J. C. Turtle mating systems: Behavior, sperm storage, and genetic paternity. J. Hered. 92, 206–211 (2001).
Google Scholar
Claussen, M. et al. Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophys. Res. Lett. 26, 2037–2040 (1999).
Google Scholar
Virah-Sawmy, M., Willis, K. J. & Gillson, L. Threshold response of Madagascar’s littoral forest to sea-level rise. Glob. Ecol. Biogeogr. 18, 98–110 (2009).
Google Scholar
Wahlund, S. Zusammensetzung von populationen und korrelationserscheinungen vom standpunkt der vererbungslehre aus betrachtet. Hereditas 11, 65–106 (1928).
Google Scholar
Hurst, G. D. D. & Jiggins, F. M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inherited symbionts. Proc. R. Soc. B Biol. Sci. 272, 1525–1534 (2005).
Google Scholar
Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet. Res. (Camb.) 89, 311–336 (2008).
Google Scholar
Valenzuela, N. Multiple paternity in side-neck turtles Podocnemis expansa: Evidence from microsatellite DNA data. Mol. Ecol. 9, 99–105 (2000).
Google Scholar
Moritz, C. Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).
Google Scholar
Volkmann, L., Martyn, I., Moulton, V., Spillner, A. & Mooers, A. O. Prioritizing populations for conservation using phylogenetic networks. PLoS ONE 9, 1–10 (2014). https://doi.org/10.1371/journal.pone.0088945
Google Scholar
García-Dorado, A. & Caballero, A. Neutral genetic diversity as a useful tool for conservation biology. Conserv. Genet. 22, 541–545 (2021).
Google Scholar
Frankham, R. Genetic rescue of small inbred populations: Meta-analysis reveals large and consistent benefits of gene flow. Mol. Ecol. 24, 2610–2618 (2015).
Google Scholar
Teixeira, J. C. & Huber, C. D. The inflated significance of neutral genetic diversity in conservation genetics. Proc. Natl. Acad. Sci. U. S. A. 118, 1–10 (2021). https://doi.org/10.1073/pnas.2015096118
Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science (80-) 318, 100–103 (2007).
Google Scholar
Source: Ecology - nature.com