in

A titanosaurian sauropod with Gondwanan affinities in the latest Cretaceous of Europe

[adace-ad id="91168"]
  • 1.

    Le Loeuff, J., Buffetaut, E. & Martin, M. The last stages of dinosaur faunal history in Europe: a succession of Maastrichtian dinosaur assemblages from the Corbières (southern France). Geol. Mag. 131, 625–630 (1994).

    Google Scholar 

  • 2.

    Vila, B., Sellés, A. G. & Brusatte, S. L. Diversity and faunal changes in the latest Cretaceous dinosaur communities of southwestern Europe. Cretac. Res. 57, 552–564 (2016).

    Google Scholar 

  • 3.

    Fondevilla, V. et al. Chronostratigraphic synthesis of the latest Cretaceous dinosaur turnover in south-western Europe. Earth Sci. Rev. 191, 168–189 (2019).

    Google Scholar 

  • 4.

    Sanz, J. L., Powell, J. E., Le Loeuff, J., Martínez, R. & Pereda-Suberbiola, X. Sauropod remains from the Upper Cretaceous of Laño (northcentral Spain). Titanosaur phylogenetic relationships. Est. Mus. Cienc. Nat. Alava 14, 235–255 (1999).

    Google Scholar 

  • 5.

    Garcia, G., Amico, S., Fournier, F., Thouand, E. & Valentin, X. A new titanosaur genus (Dinosauria, Sauropoda) from the Late Cretaceous of southern France and its paleobiogeographic implications. Bull. Soc. Géol. Fr. 181, 269–277 (2010).

    Google Scholar 

  • 6.

    Díez Díaz, V. et al. A new titanosaur (Dinosauria: Sauropoda) from the Upper Cretaceous of Velaux La-Bastide Neuve (southern France). Hist. Biol. https://doi.org/10.1080/08912963.2020.1841184 (2020).

  • 7.

    Le Loeuff, J. Ampelosaurus atacis (nov. gen., nov. sp.), a new titanosaurid (Dinosauria, Sauropoda) from the Late Cretaceous of the Upper Aude Valley (France). C. R. Acad. Sci. II 321, 693–700 (1995).

    Google Scholar 

  • 8.

    Díez Díaz, V. et al. A new titanosaur (Dinosauria, Sauropoda) from the Upper Cretaceous of Lo Hueco (Cuenca, Spain). Cretac. Res. 68, 49–60 (2016).

    Google Scholar 

  • 9.

    Company, J. Bone histology of the titanosaur Lirainosaurus astibiae (Dinosauria: Sauropoda) from the latest Cretaceous of Spain. Naturwissenschaften 98, 67–78 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Klein, N. et al. Modified laminar bone in Ampelosaurus atacis and other titanosaurs (Sauropoda): implications for life history and physiology. PLoS ONE 7, e36907 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Díez Díaz, V. et al. The titanosaurian dinosaur Atsinganosaurus velauciensis (Sauropoda) from the Upper Cretaceous of southern France: new material, phylogenetic affinities, and palaeobiogeographical implications. Cretac. Res. 91, 429–456 (2018).

    Google Scholar 

  • 12.

    Benítez-López, A. et al. The island rule explains consistent patterns of body size evolution in terrestrial vertebrates. Nat. Ecol. Evol. 5, 768–786 (2021).

    PubMed 

    Google Scholar 

  • 13.

    Benton, M. J. et al. Dinosaurs and the island rule: the dwarfed dinosaurs from Haţeg Island. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 438–454 (2010).

    Google Scholar 

  • 14.

    Canudo, J. I. Descripción de un fragmento proximal de fémur de Titanosauridae (Dinosauria, Sauropoda) del Maastrichtiense superior de Serraduy (Huesca). In Proc. XVII Jornadas de la Sociedad Española de Paleontología (eds Meléndez, G. et al.) 255–262 (Sociedad Española de Paleontología y Área y Museo de Paleontología de la Universidad de Zaragoza, 2001).

  • 15.

    Vila, B. et al. The diversity of sauropods and their first taxonomic succession from the latest Cretaceous of south-western Europe: clues to demise and extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 350352, 19–38 (2012).

    Google Scholar 

  • 16.

    Sallam, H. M. et al. New Egyptian sauropod reveals Late Cretaceous dinosaur dispersal between Europe and Africa. Nat. Ecol. Evol. 2, 445–451 (2018).

    PubMed 

    Google Scholar 

  • 17.

    Buffetaut, E. Archosaurian reptiles with Gondwanan affinities in the Upper Cretaceous of Europe. Terra Nova 1, 69–74 (1989).

    Google Scholar 

  • 18.

    Le Loeuff, J. The Campano-Maastrichtian vertebrate faunas from southern Europe and their relationships with other faunas in the world; palaeobiogeographical implications. Cretac. Res. 12, 93–114 (1991).

    Google Scholar 

  • 19.

    Pereda-Suberbiola, X. Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review. Bull. Soc. Geol. Fr. 180, 57–71 (2009).

    Google Scholar 

  • 20.

    Csiki-Sava, Z., Buffetaut, E., Ősi, A., Pereda-Suberbiola, X. & Brusatte, S. L. Island life in the Cretaceous – faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago. ZooKeys 469, 1–161 (2015).

    Google Scholar 

  • 21.

    Ezcurra, M. D. & Agnolín, F. L. A new global palaeobiogeographical model for the late Mesozoic and early Tertiary. Syst. Biol. 61, 553–566 (2012).

    PubMed 

    Google Scholar 

  • 22.

    Sellés, A. G. & Vila, B. Re-evaluation of the age of some dinosaur localities from the southern Pyrenees by means of megaloolithid oospecies. J. Iber. Geol. 41, 125–139 (2015).

    Google Scholar 

  • 23.

    Bonaparte, J. F. & Coria, R. A. Un nuevo y gigantesco saurópodo titanosaurio de la Formación Río Limay (Albiano–Cenomaniano) de la Provincia del Neuquén, Argentina. Ameghiniana 30, 217–282 (1993).

    Google Scholar 

  • 24.

    Curry Rogers, K. The postcranial osteology of Rapetosaurus krausei (Sauropoda: Titanosauria) from the Late Cretaceous of Madagascar. J. Vertebr. Paleontol. 29, 1046–1086 (2009).

    Google Scholar 

  • 25.

    Zurriaguz, V. & Powell, J. New contributions to the presacral osteology of Saltasaurus loricatus (Sauropoda, Titanosauria) from the Upper Cretaceous of northern Argentina. Cretac. Res. 54, 283–300 (2015).

    Google Scholar 

  • 26.

    Coria, R. A., Filippi, L. S., Chiappe, L. M., García, R. & Arcucci, A. B. Overosaurus paradasorum gen. et sp. nov., a new sauropod dinosaur (Titanosauria: Lithostrotia) from the Late Cretaceous of Neuquén, Patagonia, Argentina. Zootaxa 3683, 357–376 (2013).

    PubMed 

    Google Scholar 

  • 27.

    Calvo, J. O., González Riga, B. J. & Porfiri, J. D. A new titanosaur sauropod from the Late Cretaceous of Neuquén, Patagonia, Argentina. Arq. Mus. Nac. 65, 485–504 (2007).

    Google Scholar 

  • 28.

    Jain, S. L. & Bandyopadhyay, S. New titanosaurid (Dinosauria: Sauropoda) from the Late Cretaceous of central India. J. Vertebr. Paleontol. 17, 114–136 (1997).

    Google Scholar 

  • 29.

    Gorscak, E. & O’Connor, P. M. A new African titanosaurian sauropod dinosaur from the middle Cretaceous Galula Formation (Mtuka Member), Rukwa Rift Basin, southwestern Tanzania. PLoS ONE 14, e0211412 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Kellner, A. W. A. & de Azevedo, S. A. K. A new sauropod dinosaur (Titanosauria) from the Late Cretaceous of Brazil. Nat. Sci. Mus. Monogr. 15, 111–142 (1999).

    Google Scholar 

  • 31.

    Novas, F. E. et al. Paleontological discoveries in the Chorrillo Formation (upper Campanian-lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina. Rev. Mus. Argent. Cienc. Nat. 21, 217–293 (2019).

    Google Scholar 

  • 32.

    Wilson, J. A., D’Emic, M. D., Curry Rogers, K. A., Mohabey, D. M. & Sen, S. Reassessment of the sauropod dinosaur Jainosaurus (=“Antarctosaurus”) septentrionalis from the Upper Cretaceous of India. Contrib. Mus. Paleontol. Univ. Mich. 32, 17–40 (2009).

    Google Scholar 

  • 33.

    Powell, J. E. Revision of South American titanosaurid dinosaurs: palaeobiological, palaeobiogeographical and phylogenetic aspects. Rec. Queen Vic. Mus. 111, 1–173 (2003).

    Google Scholar 

  • 34.

    Smith, J. B. et al. A giant sauropod dinosaur from an Upper Cretaceous mangrove deposit in Egypt. Science 292, 1704–1706 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Otero, A. & Vizcaíno, S. F. Hindlimb musculature and function of Neuquensaurus australis (Sauropoda: Titanosauria). Ameghiniana 45, 333–348 (2008).

    Google Scholar 

  • 36.

    von Huene, F. Los saurisquios y ornitisquios del Cretáceo Argentino. Mus. La Plata 3, 1–196 (1929).

    Google Scholar 

  • 37.

    Mannion, P. D. & Otero, A. A reappraisal of the Late Cretaceous Argentinean sauropod dinosaur Argyrosaurus superbus, with a description of a new titanosaur genus. J. Vertebr. Paleontol. 32, 614–638 (2012).

    Google Scholar 

  • 38.

    Mocho, P., Pérez-García, A., Martín Jiménez, M. & Ortega, F. New remains from the Spanish Cenomanian shed light on the Gondwanan origin of European Early Cretaceous titanosaurs. Cretac. Res. 95, 164–190 (2019).

    Google Scholar 

  • 39.

    Díez Díaz, V., Pereda Suberbiola, X. & Sanz, J. L. Appendicular skeleton and dermal armour of the Late Cretaceous titanosaur Lirainosaurus astibiae (Dinosauria: Sauropoda) from Spain. Palaeontol. Electronica 16, 19A (2013).

    Google Scholar 

  • 40.

    Le Loeuff, J. in Thunder-Lizards: The Sauropodomorph Dinosaurs (eds Tidwell, V. & Carpenter, K.) 115–137 (Indiana Univ. Press, 2005).

  • 41.

    Borsuk-Bialynicka, M. A new camarasaurid sauropod Opisthocoelicaudia skarzynskii gen. n., sp. n. from the Upper Cretaceous of Mongolia. Acta Palaeontol. Pol. 37, 5–63 (1977).

    Google Scholar 

  • 42.

    Filippi, L. S., García, R. A. & Garrido, A. A new sauropod titanosaur from the Plottier Formation (Upper Cretaceous) of Patagonia (Argentina). Geol. Acta 9, 1–12 (2011).

    Google Scholar 

  • 43.

    Salgado, L., Coria, R. A. & Calvo, J. O. Evolution of titanosaurid sauropods. I: phylogenetic analysis based on the postcranial evidence. Ameghiniana 34, 3–32 (1997).

    Google Scholar 

  • 44.

    D’Emic, M. D. The early evolution of titanosauriform sauropod dinosaurs. Zool. J. Linn. Soc. 166, 624–671 (2012).

    Google Scholar 

  • 45.

    Tschopp, E. & Mateus, O. Clavicles, interclavicles, gastralia, and sternal ribs in sauropod dinosaurs: new reports from Diplodocidae and their morphological, functional and evolutionary implications. J. Anat. 222, 321–340 (2013).

    PubMed 

    Google Scholar 

  • 46.

    Wilson, J. A. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zool. J. Linn. Soc. 136, 217–276 (2002).

    Google Scholar 

  • 47.

    Powell, J. E. in Los Dinosaurios y Su Entorno Biótico (eds Sanz, J. L. & Buscalioni, A. D.) 165–230 (Instituto ‘Juan de Valdés’, 1992).

  • 48.

    Otero, A. The appendicular skeleton of Neuquensaurus, a Late Cretaceous saltasaurine sauropod from Patagonia, Argentina. Acta Palaeontol. Pol. 55, 399–426 (2010).

    Google Scholar 

  • 49.

    Gilmore, C. W. Reptilian Fauna of the North Horn Formation of Central Utah Professional Paper 210-C (USGS Numbered Series, 1946).

  • 50.

    Ullmann, P. V. & Lacovara, K. J. Appendicular osteology of Dreadnoughtus schrani, a giant titanosaurian (Sauropoda, Titanosauria) from the Upper Cretaceous of Patagonia, Argentina. J. Vertebr. Paleontol. 36, e1225303 (2016).

    Google Scholar 

  • 51.

    Poropat, S. F. Carl Wiman’s sauropods: the Uppsala Museum of Evolution’s collection. GFF 135, 104–119 (2013).

    CAS 

    Google Scholar 

  • 52.

    Cerda, I. A., Salgado, L. & Powell, J. E. Extreme postcranial pneumaticity in sauropod dinosaurs from South America. Paläontol. Z. 86, 441–449 (2012).

    Google Scholar 

  • 53.

    Wilson, J. A. & Carrano, M. T. Titanosaurs and the origin of “wide-gauge” trackways: a biomechanical and systematic perspective on sauropod locomotion. Paleobiol. 25, 252–267 (1999).

    Google Scholar 

  • 54.

    Upchurch, P., Barrett, P. & Dodson, P. in The Dinosauria (eds Weishampel, D. B. et al.) 259–324 (Univ. California Press, 2004).

  • 55.

    Lehman, T. M. & Coulson, A. B. A juvenile specimen of the sauropod dinosaur Alamosaurus sanjuanensis from the Upper Cretaceous of Big Bend National Park, Texas. J. Paleontol. 76, 156–172 (2002).

    Google Scholar 

  • 56.

    Gallina, P. A. & Otero, A. Reassessment of Laplatasaurus araukanicus (Sauropoda: Titanosauria) from the Upper Cretaceous of Patagonia, Argentina. Ameghiniana 52, 487–501 (2015).

    Google Scholar 

  • 57.

    Wilson, J. A. & Upchurch, P. Redescription and reassessment of the phylogenetic affinities of Euhelopus zdanskyi (Dinosauria: Sauropoda) from the Early Cretaceous of China. J. Syst. Palaeontol. 7, 199–239 (2009).

    Google Scholar 

  • 58.

    Sereno, P. C. A rationale for phylogenetic definitions, with application to the higher-level taxonomy of Dinosauria. Neues Jahrb. Geol. Paläontol. Abh. 210, 41–83 (1998).

    Google Scholar 

  • 59.

    Chiappe, L. M. et al. Sauropod dinosaur embryos from the Late Cretaceous of Patagonia. Nature 396, 258–261 (1998).

    CAS 

    Google Scholar 

  • 60.

    Haq, B. U. Cretaceous eustasy revisited. Glob. Planet. Change 113, 44–58 (2014).

    Google Scholar 

  • 61.

    Gheerbrant, E. & Rage, J.-C. Paleobiogeography of Africa: how distinct from Gondwana and Laurasia? Palaeogeogr. Palaeoclimatol. Palaeoecol. 241, 224–246 (2006).

    Google Scholar 

  • 62.

    Canudo, J. I. et al. What Iberian dinosaurs reveal about the bridge said to exist between Gondwana and Laurasia in the Early Cretaceous. Bull. Soc. Géol. Fr. 180, 5–11 (2009).

    Google Scholar 

  • 63.

    Dal Sasso, C., Pierangelini, G., Famiani, F., Cau, A. & Nicosia, U. First sauropod bones from Italy offer new insights on the radiation of Titanosauria between Africa and Europe. Cretac. Res. 64, 88–109 (2016).

    Google Scholar 

  • 64.

    Stein, K. et al. Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria). Proc. Natl Acad. Sci. USA 107, 9258–9263 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Botfalvai, G. et al. ‘X’ marks the spot! Sedimentological, geochemical and palaeontological investigations of Upper Cretaceous (Maastrichtian) vertebrate fossil localities from the Vălioara valley (Densuş-Ciula Formation, Hațeg Basin, Romania). Cretac. Res. 123, 104781 (2021).

    Google Scholar 

  • 66.

    Csiki-Sava, Z. et al. The east side story–the Transylvanian latest Cretaceous continental vertebrate record and its implications for understanding Cretaceous–Paleogene boundary events. Cretac. Res. 57, 662–698 (2016).

    Google Scholar 

  • 67.

    Campione, N. E. & Evans, D. C. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biol. 10, 60 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    González Riga, B. J., Lamanna, M. C., Ortiz David, L. D., Calvo, J. O. & Coria, J. P. A gigantic new dinosaur from Argentina and the evolution of the sauropod hind foot. Sci. Rep. 6, 19165 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Seebacher, F. New method to calculate allometric length–mass relationships of dinosaurs. J. Vertebr. Paleontol. 21, 51–60 (2001).

    Google Scholar 

  • 70.

    Mallison, H. & Wings, O. Photogrammetry in paleontology— a practical guide. J. Paleontol. Tech. 12, 1–31 (2014).

    Google Scholar 

  • 71.

    Matthews, N., Noble, T. & Breithaupt, B. H. in Dinosaur Tracks—The Next Steps (eds Falkingham, P. L. et al.) 28–55 (Indiana Univ. Press, 2016).

  • 72.

    Falkingham, P. L. et al. A standard protocol for documenting modern and fossil ichnological data. Palaeontology 61, 469–480 (2018).

    Google Scholar 

  • 73.

    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755 (2001).

    CAS 

    Google Scholar 

  • 74.

    Stadler, T., Kühnert, D., Bonhoeffer, S. & Drummond, A. J. Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc. Natl Acad. Sci. USA 110, 228–233 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Matzke, N. J. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013).

    Google Scholar 

  • 76.

    Ogg, J. G. & Hinnov, L. A. in The Geological Time Scale (eds Gradstein, F. M. et al.) 793–853 (Elsevier, 2012).

  • 77.

    Vianey-Liaud, M., Khosla, A. & Garcia, G. Relationships between European and Indian dinosaur eggshells of the oofamily Megaloolithidae. J. Vertebr. Paleontol. 23, 575–585 (2003).

    Google Scholar 


  • Source: Ecology - nature.com

    Biological manganese-dependent sulfide oxidation impacts elemental gradients in redox-stratified systems: indications from the Black Sea water column

    3 Questions: What a single car can say about traffic