in

Arrested diversification? The phylogenetic distribution of poorly-diversifying lineages

  • Zhang, Z.-Q. Phylum Athropoda. Zootaxa 3703, 17 (2013).

    Article 

    Google Scholar 

  • Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201 (2016).

    Article 

    Google Scholar 

  • Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C. & Widmayer, H. A. Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecol 18, 21 (2018).

    Article 

    Google Scholar 

  • Glor, R. E. Phylogenetic Insights on Adaptive Radiation. Annu. Rev. Ecol. Evol. Syst. 41, 251–270 (2010).

    Article 

    Google Scholar 

  • Schluter, D. The ecology of adaptive radiation. (Oxford Univ Press, 2000).

  • Simpson, G. G. Tempo and mode in evolution. (Columbia Univ Press, 1944).

  • Gavrilets, S. & Losos, J. B. Adaptive Radiation: Contrasting Theory with Data. Science 323, 732–737 (2009).

    Article 
    CAS 

    Google Scholar 

  • Losos, J. B. Adaptive Radiation, Ecological Opportunity, and Evolutionary Determinism: American Society of Naturalists E. O. Wilson Award Address. Am. Nat. 175, 623–639 (2010).

    Article 

    Google Scholar 

  • Hodges, S. A. & Arnold, M. L. Spurring plant diversification: are floral nectar spurs a key innovation? Proc. R Soc. B: Biol. Sci. 262, 343–348 (1995).

    Article 

    Google Scholar 

  • Hunter, J. P. & Jernvall, J. The hypocone as a key innovation in mammalian evolution. Proc. Natl. Acad. Sci. U.S.A. 92, 10718–10722 (1995).

    Article 
    CAS 

    Google Scholar 

  • Grant, P. R. Ecology and Evolution of Darwin’s Finches. (Princeton Univ Press, 1986).

  • Erwin, D. H. The end and the beginning: recoveries from mass extinctions. Trend. Ecol. Evol. 13, 344–349 (1998).

    Article 
    CAS 

    Google Scholar 

  • Jablonski, D. Lessons from the past: Evolutionary impacts of mass extinctions. Proc. Natl. Acad. Sci. U.S.A. 98, 5393–5398 (2001).

    Article 
    CAS 

    Google Scholar 

  • Donoghue, M. J. & Sanderson, M. J. Confluence, synnovation, and depauperons in plant diversification. New Phytol. 207, 260–274 (2015).

    Article 

    Google Scholar 

  • Pie, M. R. & Feitosa, R. S. M. Relictual ant lineages and their evolutionary implications. Myrmecol News 22, 55–58 (2016).

    Google Scholar 

  • Eldredge, N. & Stanley, S. M. Living Fossils (Casebooks in Earth Sciences). (Springer, 1984).

  • Alfaro, M. E. et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl. Acad. Sci. 106, 13410–13414 (2009).

    Article 
    CAS 

    Google Scholar 

  • Magallón, S., Sánchez-Reyes, L. L. & Gómez-Acevedo, S. L. Thirty clues to the exceptional diversification of flowering plants. Ann. Botany 123, 491–503 (2019).

    Article 

    Google Scholar 

  • Hunter, J. P. Key innovations and the ecology of macroevolution. Trend. Ecol. Evol. 13, 31–36 (1998).

    Article 
    CAS 

    Google Scholar 

  • Wellborn, G. A. & Langerhans, R. B. Ecological opportunity and the adaptive diversification of lineages. Ecol. Evol. 5, 176–195 (2015).

    Article 

    Google Scholar 

  • Gould, S. J. & Vrba, E. S. Exaptation—a Missing Term in the Science of Form. Paleobiology 8, 4–15 (1982).

    Article 

    Google Scholar 

  • Eldredge, N. Simpson’s Inverse: Bradytely and the Phenomenon of Living Fossils. in Living Fossils (eds. Eldredge, N. & Stanley, S. M.) 272–277 (Springer New York, 1984). https://doi.org/10.1007/978-1-4613-8271-3_34.

  • Nagalingum, N. S. et al. Recent Synchronous Radiation of a Living Fossil. Science 334, 796–799 (2011).

    Article 
    CAS 

    Google Scholar 

  • Schopf, T. J. M. Rates of Evolution and the Notion of ‘Living Fossils’. Annu. Rev. Earth Planet. Sci. 12, 245–292 (1984).

    Article 

    Google Scholar 

  • Czekanski-Moir, J. E. & Rundell, R. J. The Ecology of Nonecological Speciation and Nonadaptive Radiations. Trend. Ecol. Evol. 34, 400–415 (2019).

    Article 

    Google Scholar 

  • Olson, M. E. & Arroyo-Santos, A. Thinking in continua: beyond the “adaptive radiation” metaphor. BioEssays 31, 1337–1346 (2009).

    Article 

    Google Scholar 

  • Barnes, B. D., Sclafani, J. A. & Zaffos, A. Dead clades walking are a pervasive macroevolutionary pattern. Proc. Natl. Acad. Sci. USA 118, e2019208118 (2021).

    Article 
    CAS 

    Google Scholar 

  • Quental, T. B. & Marshall, C. R. How the Red Queen Drives Terrestrial Mammals to Extinction. Science 341, 290–292 (2013).

    Article 
    CAS 

    Google Scholar 

  • Strathmann, R. R. & Slatkin, M. The improbability of animal phyla with few species. Paleobiology 9, 97–106 (1983).

    Article 

    Google Scholar 

  • Darwin, C. On the origin of species by means of natural selection. (J. Murray, 1859).

  • Kase, T. & Hayami, I. Unique submarine cave mollusc fauna: composition, origin and adaptation. J. Mollus Stud. 58, 446–449 (1992).

    Article 

    Google Scholar 

  • Tunnicliffe, V. The Nature and Origin of the Modern Hydrothermal Vent Fauna. PALAIOS 7, 338 (1992).

    Article 

    Google Scholar 

  • Oji, T. Is predation intensity reduced with increasing depth? Evidence from the west Atlantic stalked crinoid Endoxocrinus parrae (Gervais) and implications for the Mesozoic marine revolution. Paleobiology 22, 339–351 (1996).

    Article 

    Google Scholar 

  • Oji, T. & Okamoto, T. Arm autotomy and arm branching pattern as anti-predatory adaptations in stalked and stalkless crinoids. Paleobiology 20, 27–39 (1994).

    Article 

    Google Scholar 

  • Rest, J. S. et al. Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. Mol. Phyl. Evol. 29, 289–297 (2003).

    Article 
    CAS 

    Google Scholar 

  • Rabosky, D. L. & Benson, R. B. J. Ecological and biogeographic drivers of biodiversity cannot be resolved using clade age-richness data. Nat. Commun. 12, 2945 (2021).

    Article 
    CAS 

    Google Scholar 

  • Louca, S., Henao‐Diaz, L. F. & Pennell, M. The scaling of diversification rates with age is likely explained by sampling bias. Evolution 76, 1625–1637 (2022).

    Article 

    Google Scholar 

  • Qian, H. & Zhang, J. Using an updated time-calibrated family-level phylogeny of seed plants to test for non-random patterns of life forms across the phylogeny: Phylogeny of seed plant families. J. Syst. Evol. 52, 423–430 (2014).

    Article 

    Google Scholar 

  • The Plant List. Version 1.1. http://www.theplantlist.org/.

  • Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).

    Article 

    Google Scholar 

  • Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conservation 204, 23–31 (2016).

    Article 

    Google Scholar 

  • Faurby, S. et al. PHYLACINE 1.2: The Phylogenetic Atlas of Mammal Macroecology. Ecology 99, 2626–2626 (2018).

    Article 

    Google Scholar 

  • IUCN. IUCN red List of Threatened Species. Version 2017.3. Retrieved from https://www.iucnredlist.org. Downloaded on May 14, 2020. (2017).

  • Magallon, S. & Sanderson, M. J. Absolute diversification rates in angiosperm clades. Evolution 55, 1762–1780 (2001).

    CAS 

    Google Scholar 

  • Raup, D. M. Mathematical models of cladogenesis. Paleobiology 11, 42–52 (1985).

    Article 

    Google Scholar 

  • Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    Article 
    CAS 

    Google Scholar 

  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar 

  • Vilela, B. & Villalobos, F. letsR: a new R package for data handling and analysis in macroecology. Methods Ecol. Evol. 6, 1229–1234 (2015).

    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/. (2020).

  • Garnier, S. viridis: Default Color Maps from ‘matplotlib’. Version 0.5.1. Available in https://CRAN.R-project.org/package=viridis (2018).

  • Bivand, R. et al. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. Version 1.5.32. Available in https://CRAN.R-project.org/package=rgdal (2020).


  • Source: Ecology - nature.com

    The success of woody plant removal depends on encroachment stage and plant traits

    Evelyn Wang appointed as director of US Department of Energy’s Advanced Research Projects Agency-Energy