Zhang, Z.-Q. Phylum Athropoda. Zootaxa 3703, 17 (2013).
Google Scholar
Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201 (2016).
Google Scholar
Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C. & Widmayer, H. A. Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecol 18, 21 (2018).
Google Scholar
Glor, R. E. Phylogenetic Insights on Adaptive Radiation. Annu. Rev. Ecol. Evol. Syst. 41, 251–270 (2010).
Google Scholar
Schluter, D. The ecology of adaptive radiation. (Oxford Univ Press, 2000).
Simpson, G. G. Tempo and mode in evolution. (Columbia Univ Press, 1944).
Gavrilets, S. & Losos, J. B. Adaptive Radiation: Contrasting Theory with Data. Science 323, 732–737 (2009).
Google Scholar
Losos, J. B. Adaptive Radiation, Ecological Opportunity, and Evolutionary Determinism: American Society of Naturalists E. O. Wilson Award Address. Am. Nat. 175, 623–639 (2010).
Google Scholar
Hodges, S. A. & Arnold, M. L. Spurring plant diversification: are floral nectar spurs a key innovation? Proc. R Soc. B: Biol. Sci. 262, 343–348 (1995).
Google Scholar
Hunter, J. P. & Jernvall, J. The hypocone as a key innovation in mammalian evolution. Proc. Natl. Acad. Sci. U.S.A. 92, 10718–10722 (1995).
Google Scholar
Grant, P. R. Ecology and Evolution of Darwin’s Finches. (Princeton Univ Press, 1986).
Erwin, D. H. The end and the beginning: recoveries from mass extinctions. Trend. Ecol. Evol. 13, 344–349 (1998).
Google Scholar
Jablonski, D. Lessons from the past: Evolutionary impacts of mass extinctions. Proc. Natl. Acad. Sci. U.S.A. 98, 5393–5398 (2001).
Google Scholar
Donoghue, M. J. & Sanderson, M. J. Confluence, synnovation, and depauperons in plant diversification. New Phytol. 207, 260–274 (2015).
Google Scholar
Pie, M. R. & Feitosa, R. S. M. Relictual ant lineages and their evolutionary implications. Myrmecol News 22, 55–58 (2016).
Eldredge, N. & Stanley, S. M. Living Fossils (Casebooks in Earth Sciences). (Springer, 1984).
Alfaro, M. E. et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl. Acad. Sci. 106, 13410–13414 (2009).
Google Scholar
Magallón, S., Sánchez-Reyes, L. L. & Gómez-Acevedo, S. L. Thirty clues to the exceptional diversification of flowering plants. Ann. Botany 123, 491–503 (2019).
Google Scholar
Hunter, J. P. Key innovations and the ecology of macroevolution. Trend. Ecol. Evol. 13, 31–36 (1998).
Google Scholar
Wellborn, G. A. & Langerhans, R. B. Ecological opportunity and the adaptive diversification of lineages. Ecol. Evol. 5, 176–195 (2015).
Google Scholar
Gould, S. J. & Vrba, E. S. Exaptation—a Missing Term in the Science of Form. Paleobiology 8, 4–15 (1982).
Google Scholar
Eldredge, N. Simpson’s Inverse: Bradytely and the Phenomenon of Living Fossils. in Living Fossils (eds. Eldredge, N. & Stanley, S. M.) 272–277 (Springer New York, 1984). https://doi.org/10.1007/978-1-4613-8271-3_34.
Nagalingum, N. S. et al. Recent Synchronous Radiation of a Living Fossil. Science 334, 796–799 (2011).
Google Scholar
Schopf, T. J. M. Rates of Evolution and the Notion of ‘Living Fossils’. Annu. Rev. Earth Planet. Sci. 12, 245–292 (1984).
Google Scholar
Czekanski-Moir, J. E. & Rundell, R. J. The Ecology of Nonecological Speciation and Nonadaptive Radiations. Trend. Ecol. Evol. 34, 400–415 (2019).
Google Scholar
Olson, M. E. & Arroyo-Santos, A. Thinking in continua: beyond the “adaptive radiation” metaphor. BioEssays 31, 1337–1346 (2009).
Google Scholar
Barnes, B. D., Sclafani, J. A. & Zaffos, A. Dead clades walking are a pervasive macroevolutionary pattern. Proc. Natl. Acad. Sci. USA 118, e2019208118 (2021).
Google Scholar
Quental, T. B. & Marshall, C. R. How the Red Queen Drives Terrestrial Mammals to Extinction. Science 341, 290–292 (2013).
Google Scholar
Strathmann, R. R. & Slatkin, M. The improbability of animal phyla with few species. Paleobiology 9, 97–106 (1983).
Google Scholar
Darwin, C. On the origin of species by means of natural selection. (J. Murray, 1859).
Kase, T. & Hayami, I. Unique submarine cave mollusc fauna: composition, origin and adaptation. J. Mollus Stud. 58, 446–449 (1992).
Google Scholar
Tunnicliffe, V. The Nature and Origin of the Modern Hydrothermal Vent Fauna. PALAIOS 7, 338 (1992).
Google Scholar
Oji, T. Is predation intensity reduced with increasing depth? Evidence from the west Atlantic stalked crinoid Endoxocrinus parrae (Gervais) and implications for the Mesozoic marine revolution. Paleobiology 22, 339–351 (1996).
Google Scholar
Oji, T. & Okamoto, T. Arm autotomy and arm branching pattern as anti-predatory adaptations in stalked and stalkless crinoids. Paleobiology 20, 27–39 (1994).
Google Scholar
Rest, J. S. et al. Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. Mol. Phyl. Evol. 29, 289–297 (2003).
Google Scholar
Rabosky, D. L. & Benson, R. B. J. Ecological and biogeographic drivers of biodiversity cannot be resolved using clade age-richness data. Nat. Commun. 12, 2945 (2021).
Google Scholar
Louca, S., Henao‐Diaz, L. F. & Pennell, M. The scaling of diversification rates with age is likely explained by sampling bias. Evolution 76, 1625–1637 (2022).
Google Scholar
Qian, H. & Zhang, J. Using an updated time-calibrated family-level phylogeny of seed plants to test for non-random patterns of life forms across the phylogeny: Phylogeny of seed plant families. J. Syst. Evol. 52, 423–430 (2014).
Google Scholar
The Plant List. Version 1.1. http://www.theplantlist.org/.
Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).
Google Scholar
Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conservation 204, 23–31 (2016).
Google Scholar
Faurby, S. et al. PHYLACINE 1.2: The Phylogenetic Atlas of Mammal Macroecology. Ecology 99, 2626–2626 (2018).
Google Scholar
IUCN. IUCN red List of Threatened Species. Version 2017.3. Retrieved from https://www.iucnredlist.org. Downloaded on May 14, 2020. (2017).
Magallon, S. & Sanderson, M. J. Absolute diversification rates in angiosperm clades. Evolution 55, 1762–1780 (2001).
Google Scholar
Raup, D. M. Mathematical models of cladogenesis. Paleobiology 11, 42–52 (1985).
Google Scholar
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
Google Scholar
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
Google Scholar
Vilela, B. & Villalobos, F. letsR: a new R package for data handling and analysis in macroecology. Methods Ecol. Evol. 6, 1229–1234 (2015).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/. (2020).
Garnier, S. viridis: Default Color Maps from ‘matplotlib’. Version 0.5.1. Available in https://CRAN.R-project.org/package=viridis (2018).
Bivand, R. et al. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. Version 1.5.32. Available in https://CRAN.R-project.org/package=rgdal (2020).
Source: Ecology - nature.com