Darrah, S. E. et al. Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human-made wetlands. Ecol. Ind. 99, 294–298 (2019).
Gardner, R.C., & Finlayson, C., (eds) Global Wetland Outlook: State of the World’s Wetlands and Their Services to People. (Ramsar Convention Secretariat, 2018).
Tao, S. et al. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. 112(7), 2281–2286 (2015).
Google Scholar
Davidson, N. Wetland losses and the status of wetland-dependent species. in The wetland book II: distribution, description, and conservation 369–381 (Springer, 2018).
Xu, Y. et al. Loss of functional connectivity in migration networks induces population decline in migratory birds. Ecol. Appl. 29(7), e10960 (2019).
Wang, X. et al. Effects of anthropogenic landscapes on population maintenance of waterbirds. Conserv. Biol. https://doi.org/10.1111/cobi.13808 (2021).
Google Scholar
Ma, Z., Cai, Y., Li, B. & Chen, J. Managing wetland habitats for waterbirds: An international perspective. Wetlands 30(1), 15–27 (2010).
Google Scholar
Rönkä, M. T., Saari, C. L. V., Lehikoinen, E. A., Suomela, J., Häkkilä, K. (eds) Environmental changes and population trends of breeding waterfowl in northern Baltic Sea. in Annales Zoologici Fennici JSTOR (2005).
Pöysä, H. & Paasivaara, A. Shifts in fine-scale distribution and breeding success of boreal waterbirds along gradients in ice-out timing and habitat structure. Freshw. Biol. 66(11), 2038–2050 (2021).
Borgo, J. S. & Conover, M. R. Visual and olfactory concealment of duck nests: Influence on nest site selection and success. Hum. Wildl. Interact. 10(1), 110–121 (2016).
Batbayar, N., Takekawa, J. Y., Natsagdorj, T., Spragens, K. A. & Xiao, X. Site selection and nest survival of the bar-headed goose (Anser indicus) on the Mongolian Plateau. Waterbirds Int. J. Waterbird Biol. 37(4), 381–393 (2014).
Syroechkovsky, E. V., Litvin K. E., Gurtovaya E. N. Nesting ecology of Bewick’s Swans on Vaygach Island, Russia. Waterbirds 221–6 (2002).
Meijer, T. & Drent, R. Re-examination of the capital and income dichotomy in breeding birds. Ibis 141(3), 399–414 (1999).
Rothenbach, C. A. & Kelly, J. P. The parental dilemma under variable predation pressure: Adaptive variation in nest attendance by great egrets. Condor 114(1), 90–99 (2012).
Zhang, L., An, B., Shu, M. & Yang, X. Nest-site selection, reproductive ecology and shifts within core-use areas of black-necked cranes at the northern limit of the Tibetan Plateau. PeerJ 5(1), e2939 (2017).
Google Scholar
Newton, I. The Migration Ecology of Birds (Elsevier, 2010).
Donnelly, J. P. et al. Migration efficiency sustains connectivity across agroecological networks supporting sandhill crane migration. Ecosphere 12(6), e03543 (2021).
Barzen, J. A. & Serie, J. R. Nutrient reserve dynamics of breeding canvasbacks. Auk 107(1), 75–85 (1990).
Burnham, J. W. et al. Novel foraging by wintering Siberian cranes leucogeranus leucogeranus at China’s Poyang lake indicates broader changes in the ecosystem and raises new challenges for a critically endangered species. Bird Conserv. Int. 27, 204–223 (2017).
Krapu, G. L., Iverson, G. C., Reinecke, K. J. & Boise, C. M. Fat deposition and usage by arctic-nesting sandhill cranes during spring. Auk 102(2), 362–368 (1985).
Tøttrup, A. P. et al. Avian migrants adjust migration in response to environmental conditions en route. Biol. Lett. 4(6), 685–688 (2008).
Google Scholar
Sorte, F. A. L. et al. The role of atmospheric conditions in the seasonal dynamics of North American migration flyways. J. Biogeogr. 41(9), 1685–1696 (2014).
Marra, P. P., Francis, C. M., Mulvihill, R. S. & Moore, F. R. The influence of climate on the timing and rate of spring bird migration. Oecologia 142(2), 307–315 (2005).
Google Scholar
Studds, C. E. & Marra, P. P. Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc. R. Soc. B Biol. Sci. 278(1723), 3437–3443 (2011).
Saino, N. et al. Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol. Lett. 7(1), 21–25 (2004).
Barzen, JA. Chapter 15 – Ecological Implications of Habitat Use by Reintroduced and Remnant Whooping Crane Populations. In: Nyhus PJ, French JB, Converse SJ, Austin JE, Delap Jh (eds.), Whooping Cranes: Biology and Conservation. (Academic Press, New York, 2019).
Norris, D. R., Marra, P. P., Kyser, T. K., Sherry, T. W. & Ratcliffe, L. M. Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc. R. Soc. B Biol. Sci. 271(1534), 59–64 (2004).
Norris, D. R. & Taylor, C. M. Predicting the consequences of carry-over effects for migratory populations. Biol. Let. 2(1), 148–151 (2006).
Newton, I. Population Limitation in Birds (Academic press, 1998).
Altwegg, R. & Anderson, M. D. Rainfall in arid zones: Possible effects of climate change on the population ecology of blue cranes. Funct. Ecol. 23(5), 1014–1021 (2009).
Layton-Matthews, K., Hansen, B. B., Grøtan, V., Fuglei, E. & Loonen, M. J. J. E. Contrasting consequences of climate change for migratory geese: Predation, density dependence and carryover effects offset benefits of high-arctic warming. Glob. Chang. Biol. 26(2), 642–657 (2020).
Google Scholar
Madsen, J. & Fox, A. D. Impacts of hunting disturbance on waterbirds-a review. Wildl. Biol. 1(4), 193–207 (1995).
Minias, P. Reproduction and survival in the city: Which fitness components drive urban colonization in a reed-nesting waterbird?. Curr. Zool. 62(2), 79–87 (2016).
Google Scholar
Cheng, Y., Fiedler, W., Wikelski, M. & Flack, A. “Closer-to-home” strategy benefits juvenile survival in a long-distance migratory bird. Ecol. Evol. 9, 8945–8952 (2019).
Google Scholar
Sargeant, A. B. & Raveling, D. G. Mortality during the breeding season. In Ecology and Management of Breeding Waterfowl (eds Batt, B. D. J. et al.) 396–422 (University of Minnesota Press, 1992).
IUCN. The IUCN Red List of Threatened Species. http://www.iucnredlist.org Downloaded on 22 November 2021. Version 2021–2 (2021).
Mudrik, E. A. et al. Gene pool homogeneity of western and eastern populations of the white-naped crane antigone vipio in different flyways. Russ. J. Genet. 58(5), 566–575 (2022).
Google Scholar
Wang, W., Fraser, J. D. & Chen, J. Distribution and long-term population trends of wintering waterbirds in Poyang lake China. Wetlands 39(S1), 125–135 (2019).
Wang, W., Fraser, J. D. & Chen, J. Wintering waterbirds in the middle and lower Yangtze river floodplain: Changes in abundance and distribution. Bird Conserv. Int. 27(2), 167–186 (2017).
Google Scholar
Gilbert, M., Buuveibaatar, B., Fine, A. E., Jambal, L. & Strindberg, S. Declining breeding populations of white-naped cranes in eastern Mongolia, a ten-year update. Bird Conserv. Int. 26(04), 490–504 (2016).
Mirande, C.M., Harris J.T. Crane Conservation Strategy. in International Crane Foundation (Baraboo, Wisconsin, USA, 2019).
Bouchard, F. et al. Paleolimnology of thermokarst lakes: A window into permafrost landscape evolution. Arct. Sci. 3, 91–117 (2016).
Fernández-Tizón, M., Emmenegger, T., Perner, J. & Hahn, S. Arthropod biomass increase in spring correlates with NDVI in grassland habitat. Sci. Nat. 107(5), 42 (2020).
Dong, J. et al. Mapping paddy rice planting area in northeastern Asia with landsat 8 images, phenology-based algorithm and google earth engine. Remote Sens. Environ. 185, 142–154 (2016).
Google Scholar
Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540(7633), 418–422 (2016).
Google Scholar
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146(730), 1999–2049 (2020).
Google Scholar
Bivand, R., Rundel, C. Rgeos: Interface to geometry engine-open source (GEOS). R package version 03–26. (2017).
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1(1), 3–14 (2010).
Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1), 27–46 (2013).
Barton, K., Barton, M. K. Package ‘MuMIn’. R package version. 1(6), (2019).
Anderson, D. & Burnham, K. Model selection and multi-model inference. Second NY Springer-Verlag 2004(63), 10 (2020).
Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9(2), 880–890 (2019).
Google Scholar
Batbayar, N. et al. Combining tracking and remote sensing to identify critical year-round site, habitat use and migratory connectivity of a threatened waterbird species. Remote Sens. 13(20), 4049 (2021).
Google Scholar
Lang, X. et al. Luan river upper reaches: The important stopover site of the white-naped crane (Grus vipio) western population. Biodivers. Sci. 28(10), 1213 (2020).
Jia, Y. et al. Shifting of the migration route of white-naped crane (Antigone vipio) due to wetland loss in China. Remote Sens. 13(15), 2984 (2021).
Google Scholar
Lloyd, C. T. et al. Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big Earth Data 3(2), 108–139 (2019).
Google Scholar
Kéry, M. & Schaub, M. Bayesian Population Analysis Using WinBUGS: A Hierarchical Perspective (Academic Press, 2011).
Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25(1), 1–18 (2008).
Hastie, T. J. & Tibshirani, R. J. Generalized Additive Model (Routledge, 2017).
Google Scholar
Fair, J. M. & Jones, J. Guidelines to the Use of Wild Birds in Research (Ornithological council, 2010).
RStudio Team RStudio. Integrated Development Environment for R (Studio, PBC, 2022).
Higuchi, H. et al. Using a remote technology in conservation: Satellite tracking white-naped cranes in Russia and Asia. Conserv. Biol. 18(1), 136–147 (2004).
Weller, M. W. Wetland Birds: Habitat Resources and Conservation Implications (University Press, Cambridge, 1999).
Vandandorj, S., Gantsetseg, B. & Boldgiv, B. Spatial and temporal variability in vegetation cover of Mongolia and its implications. J. Arid Land 7(4), 450–461 (2015).
Bradter, U. T. E., Gombobaatar, S., Uuganbayar, C., Grazia, T. E. & Exo, K.-M. Reproductive performance and nest-site selection of white-naped cranes grus vipio in the Ulz river valley, north-eastern Mongolia. Bird Conserv. Int. 15(4), 313–326 (2005).
Bradter, U., Gombobaatar, S., Uuganbayar, C., Grazia, T. E. & Exo, K. M. Time budgets and habitat use of white-naped cranes grus vipio in the Ulz river valley, northeastern Mongolia during the breeding season. Bird Conserv. Int. 17(3), 259–271 (2007).
Zheng, Y. et al. Dynamic changes and driving factors of wetlands in inner Mongolia plateau China. PLoS ONE 14(8), e0221177 (2019).
Google Scholar
Linscott, J. A. & Senner, N. R. Beyond refueling: Investigating the diversity of functions of migratory stopover events. Ornithol. Appl. 123, duaa074 (2021).
Xu, Y., Kieboom, M., van Lammeren, R. J. A., Si, Y. & de Boer, W. F. Indicators of site loss from a migration network: Anthropogenic factors influence waterfowl movement patterns at stopover sites. Global Ecol. Conserv. 25, e01435 (2021).
Piersma, T. et al. Simultaneous declines in summer survival of three shorebird species signals a flyway at risk. J. Appl. Ecol. 53(2), 479–490 (2016).
Wilson, S., Gil-Weir, K. C., Clark, R. G., Robertson, G. J. & Bidwell, M. T. Integrated population modeling to assess demographic variation and contributions to population growth for endangered whooping cranes. Biol. Conserv. 197, 1–7 (2016).
Wheeler, M. E., Barzen, J. A., Crimmins, S. M. & Deelen, T. R. V. Effects of territorial status and life history on sandhill crane (Antigone canadensis) population dynamics in south-central Wisconsin, USA. Can. J. Zool. 97(2), 112–120 (2019).
Gerber, B. D. & Kendall, W. L. Considering transient population dynamics in the conservation of slow life-history species: An application to the sandhill crane. Biol. Conserv. 200, 228–239 (2016).
Servanty, S., Converse, S. J. & Bailey, L. L. Demography of a reintroduced population: Moving toward management models for an endangered species, the whooping crane. Ecol. Appl. 24(5), 927–937 (2014).
Google Scholar
Xu, W. et al. Hidden loss of wetlands in China. Curr. Biol. 29(18), 3065–71.e2 (2019).
Google Scholar
Niu, Z. et al. Mapping wetland changes in China between 1978 and 2008. Chin. Sci. Bull. 57(22), 2813–2823 (2012).
Austin, J., Morrison, K. & Harris, J. Cranes and Agriculture: A Global Guide for Sharing the Landscape (International Crane Foundation, Baraboo, 2018).
Lee, S. D., Jabłoński, P. G. & Higuchi, H. Winter foraging of threatened cranes in the demilitarized zone of Korea: Behavioral evidence for the conservation importance of unplowed rice fields. Biol. Conserv. 138(1), 286–289 (2007).
Nilsson, L., Bunnefeld, N., Persson, J., Žydelis, R. & Månsson, J. Conservation success or increased crop damage risk? The Natura 2000 network for a thriving migratory and protected bird. Biol. Conserv. 236, 1–7 (2019).
Mukherjee, A., Borad, C. K. & Parasharya, B. M. Breeding performance of the Indian sarus crane in the agricultural landscape of western India. Biol. Conserv. 105(2), 263–269 (2002).
Gopi Sundar, K. S. Are rice paddies suboptimal breeding habitat for sarus cranes in Uttar Pradesh, India?. Condor 111(4), 611–623 (2009).
Pekarsky, S., Schiffner, I., Markin, Y. & Nathan, R. Using movement ecology to evaluate the effectiveness of multiple human-wildlife conflict management practices. Biol. Conserv. 262, 109306 (2021).
Hemminger, K., König, H., Månsson, J., Bellingrath-Kimura, S.-D. & Nilsson, L. Winners and losers of land use change: A systematic review of interactions between the world’s crane species (Gruidae) and the agricultural sector. Ecol. Evol. 12(3), e8719 (2022).
Google Scholar
Amano, T. Conserving bird species in Japanese farmland: Past achievements and future challenges. Biol. Conserv. 142(9), 1913–1921 (2009).
Okuya, K. et al. Isolation and characterization of influenza A viruses from environmental water at an overwintering site of migratory birds in Japan. Adv. Virol. 160(12), 3037–3052 (2015).
Google Scholar
Wille, M. & Barr, I. G. Resurgence of avian influenza virus. Science 376(6592), 459–460 (2022).
Google Scholar
Source: Ecology - nature.com