Laffoley, D. & Baxter, J.M. Ocean Deoxygenation: Everyone’s Problem-Causes, Impacts, Consequences and Solutions. (IUCN, 2019).
Heinze, C. et al. The quiet crossing of ocean tipping points. Proc. Natl. Acad. Sci. 118(9), e2008478118 (2021).
Google Scholar
Ekau, W., Auel, H., Pörtner, H. O. & Gilbert, D. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7(5), 1669–1699 (2010).
Google Scholar
Gallo, N. D. & Levin, L. A. Fish ecology and evolution in the world’s oxygen minimum zones and implications of ocean deoxygenation. Adv. Mar. Biol. 74, 117–198 (2016).
Google Scholar
Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359(6371), eaam7240 (2018).
Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 C. Science 365(6459), eaaw6974 (2019).
Google Scholar
Sampaio, E. et al. Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat. Ecol. Evol. 5, 311–321 (2021).
Chan, F. et al. Emergence of anoxia in the California current large marine ecosystem. Science 319(5865), 920–920 (2008).
Google Scholar
Levin, L. A. et al. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6, 2063–2098 (2009).
Google Scholar
Stramma, L., Schmidtko, S., Levin, L. A. & Johnson, G. C. Ocean oxygen minima expansions and their biological impacts. Deep Sea Res Part I Oceanogr. Res. Pap. 57(4), 587–595 (2010).
Google Scholar
Hoegh-Guldberg, O. et al. 2018: Impacts of 1.5 °C Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty 175–311 (Intergovernmental Panel on Climate Change, 2019).
Zhang, X. et al. In situ Raman-based measurements of high dissolved methane concentrations in hydrate-rich ocean sediments. Geophys. Res. Lett. 38, L08605 (2011).
Google Scholar
Wright, J. J., Konwar, K. M. & Hallam, S. J. Microbial ecology of expanding oxygen minimum zones. Nat. Rev. Microbiol. 10, 381–394 (2012).
Google Scholar
Kalvelage, T. et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nat. Geosci. 6, 228–234 (2013).
Google Scholar
Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387(6630), 272–275 (1997).
Google Scholar
Zehr, J. P. & Kudela, R. M. Nitrogen cycle of the open ocean: From genes to ecosystems. Annu. Rev. Mar. Sci. 3, 197–225 (2011).
Google Scholar
Pack, M. A. et al. Methane oxidation in the Eastern Tropical North Pacific Ocean water column. J. Geophys. Res. Biogeosci. 120, 1078–1092 (2015).
Google Scholar
Lashof, D. A. & Ahuja, D. R. Relative contributions of greenhouse gas emissions to global warming. Nature 344, 529–531 (1990).
Google Scholar
Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).
Google Scholar
Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).
Google Scholar
Keeling, R. E., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).
Helm, K. P., Bindoff, N. L. & Church, J. A. Observed decreases in oxygen content of the global ocean. Geophys. Res. Lett. 38, L23602 (2011).
Google Scholar
Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).
Google Scholar
Savrda, C. E. & Bottjer, D. J. Trace·fossil model for reconstruction of paleo-oxgenation in bottom waters. Geology 14, 3–6 (1986).
Google Scholar
Savrda, C. E. & Bottjer, D. J. The exaerobic zone, a new oxygen-deficient marine biofacies. Nature 327, 54–56 (1987).
Google Scholar
Savrda, C. E. & Bottjer, D. J. Trace·fossil model for reconstructing oxygenation histories of ancient marine bottom waters: Application to Upper Cretaceous Niobrara Formation, Colorado. Palaeogeogr. Palaeoclimatol. Palaeoecol. 74, 49–74 (1989).
Kaiho, K. Morphotype changes of deep-sea benthic foraminifera during the Cenozoic Era and their paleoenvironmental implications. Kaseki (Fossils) 47, 1–23 (1989).
Kaiho, K. Global changes of Paleogene aerobic/anaerobic Benthic foraminifera and deep-sea circulation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 83, 65–85 (1991).
Kaiho, K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22, 719–722 (1994).
Google Scholar
Schumacher, S., Jorissen, F. J., Dissard, D., Larkin, K. E. & Gooday, A. J. Live (Rose Bengal stained) and dead benthic foraminifera from the oxygen minimum zone of the Pakistan continental margin (Arabian Sea). Mar. Micropaleontol. 62, 45–73 (2007).
Google Scholar
Abu-Zied, R. H. et al. Benthic foraminiferal response to changes in bottom-water oxygenation and organic carbon flux in the eastern Mediterranean during LGM to Recent times. Mar. Micropaleontol. 67, 46–68 (2008).
Google Scholar
Grunert, P. et al. Upwelling conditions in the Early Miocene Central Paratethys Sea. Geol. Carpath. 61(2), 129–145 (2010).
Google Scholar
Kaminski, M. A. Calibration of the benthic foraminiferal oxygen index in the Marmara Sea. Geol. Q. 56(4), 757–764 (2012).
Ilies, I. A. et al. Early middle Miocene paleoenvironmental evolution in southwest Transylvania (Romania): Interpretation based on foraminifera. Geol. Carpath. 71(5), 444–461 (2020).
Bernhard, J. M. & Bowser, S. S. Benthic foraminifera of dysoxic sediments: Chloroplast sequestration and functional morphology. Earth Sci. Rev. 46(1–4), 149–165 (1999).
Google Scholar
Ohkushi, K. et al. Quantified intermediate water oxygenation history of the NE Pacific: A new benthic foraminiferal record from Santa Barbara basin. Paleoceanography 28(3), 453–467 (2013).
Google Scholar
Lu, W. et al. I/Ca in epifaunal benthic foraminifera: A semi-quantitative proxy for bottom water oxygen in a multi-proxy compilation for glacial ocean deoxygenation. EPSL 533, 116055 (2020).
Google Scholar
Rathburn, A. E., Willingham, J., Ziebis, W., Burkett, A. M. & Corliss, B. H. A new biological proxy for deep-sea paleo-oxygen: Pores of epifaunal benthic foraminifera. Sci. Rep. 8, 1–8 (2018).
Google Scholar
Singh, A. D., Rai, A. K., Verma, K., Das, S. & Bharti, S. K. Benthic foraminiferal diversity response to the climate induced changes in the eastern Arabian Sea oxygen minimum zone during the last 30 ka BP. Quat. Int. 374, 118–125 (2015).
Palmer, H. M. et al. Southern California margin benthic foraminiferal assemblages record recent centennial-scale changes in oxygen minimum zone. Biogeosciences 17(11), 2923–2937 (2020).
Google Scholar
Tetard, M., Licari, L., Ovsepyan, E., Tachikawa, K. & Beaufort, L. Toward a global calibration for quantifying past oxygenation in oxygen minimum zones using benthic Foraminifera. Biogeosciences 18(9), 2827–2841 (2021).
Google Scholar
Moffitt, S. E., Hill, T. M., Ohkushi, K., Kennett, J. P. & Behl, R. J. Vertical oxygen minimum zone oscillations since 20 ka in Santa Barbara Basin: A benthic foraminiferal community perspective. Paleoceanography 29, 44–57 (2014).
Google Scholar
Hoogakker, B. A., Elderfield, H., Schmiedl, G., McCave, I. N. & Rickaby, R. E. Glacial–interglacial changes in bottom-water oxygen content on the Portuguese margin. Nat. Geosci. 8, 40–43 (2015).
Google Scholar
Glock, N., Liebetrau, V. & Eisenhauer, A. I/Ca ratios in benthic foraminifera from the Peruvian oxygen minimum zone: analytical methodology and evaluation as a proxy for redox conditions. Biogeosciences 11(23), 7077–7095 (2014).
Google Scholar
Jorissen, F.J., Fontanier, C., & Thomas, E. Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics. In: Hillaire-Marcel, C., & De Vernal, A. Proxies in late Cenozoic paleoceanography. Dev. Mar. Geol., 1, 263–325 (2007).
Diaz, R. J. Overview of hypoxia around the world. J. Environ. Qual. 30(2), 275–281 (2001).
Google Scholar
Tetard, M., Licari, L., Tachikawa, K., Ovsepyan, E. & Beaufort, L. Toward a global calibration for quantifying past oxygenation in oxygen minimum zones using benthic Foraminifera. Biogeosci. Discuss. 18(9), 2827–2841 (2021).
Diaz, R. J. & Rosenberg, R. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. 33, 245–303 (1995).
Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).
Google Scholar
Sen Gupta, B. K., Eugene Turner, R. & Rabalais, N. N. Seasonal oxygen depletion in continental-shelf waters of Louisiana: Historical record of benthic foraminifers. Geology 24(3), 227–230 (1996).
Google Scholar
Schlanger, S. O. & Jenkyns, H. C. Cretaceous oceanic anoxic events: Causes and consequences. Geol. Mijnbouw 55, 179–184 (1976).
Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11, Q03004 (2010).
Google Scholar
Clark, P. U. et al. Consequences of twenty-first century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6, 360–369 (2016).
Google Scholar
Clark, P. U. et al. Sea-level commitment as a gauge for climate policy. Nat. Clim. Change 8, 653–655 (2018).
Google Scholar
Li, C., Held, H., Hokamp, S. & Marotzke, J. Optimal temperature overshoot profile found by limiting global sea level rise as a lower-cost climate target. Sci. Adv. 6(2), eaaw9490 (2020).
Google Scholar
Berner, R. A. & Raiswell, R. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: A new theory. Geochim. Cosmochim. Acta 47(5), 855–862 (1983).
Google Scholar
Gautier, D. L. Cretaceous shales from the western interior of North America: Sulfur/carbon ratios and sulfur-isotope composition. Geology 14(3), 225–228 (1986).
Google Scholar
Kajiwara, Y. & Kaiho, K. Oceanic anoxia at the Cretaceous/Tertiary boundary supported by the sulfur isotopic record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 99, 151–162 (1992).
Anderson, R. F., LeHuray, A. P., Fleisher, M. Q. & Murray, J. W. Uranium deposition in ancouv inlet sediments, ancouver island. Geochim. Cosmochim. Acta 53(9), 2205–2213 (1989).
Google Scholar
Kaiho, K., Fujiwara, O. & Motoyama, I. Mid-Cretaceous faunal turnover of intermediate-water benthic foraminifera in the northwestern Pacific Ocean margin. Mar. Micropaleontol. 23, 13–49 (1993).
Google Scholar
Kaiho, K., Morgans, H. E. & Okada, H. Faunal turnover of intermediate-water benthic foraminifera during the Paleogene in New Zealand. Mar. Micropaleontol. 23, 51–86 (1993).
Google Scholar
Alegret, L., Molina, E. & Thomas, E. Benthic foraminiferal turnover across the Cretaceous/Paleogene boundary at Agost (southeastern Spain): Paleoenvironmental inferences. Mar. Micropaleontol. 48(3–4), 251–279 (2003).
Google Scholar
Morigi, C. Benthic environmental changes in the Eastern Mediterranean Sea during sapropel S5 deposition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 273(3–4), 258–271 (2009).
Cetean, C. G., Bălc, R., Kaminski, M. A. & Filipescu, S. Integrated biostratigraphy and palaeoenvironments of an upper Santonian—upper Campanian succession from the southern part of the Eastern Carpathians, Romania. Cretac. Res. 32(5), 575–590 (2011).
Drinia, H. & Anastasakis, G. Benthic foraminifer palaeoecology of the Late Quaternary continental outer shelf of a landlocked marine basin in central Aegean Sea, Greece. Quat. Int. 261, 43–52 (2012).
Baas, J. H., Schönfeld, J. & Zahn, R. Mid-depth oxygen drawdown during Heinrich events: Evidence from benthic foraminiferal community structure, trace-fossil tiering, and benthic δ13C at the Portuguese Margin. Mar. Geol. 152(1–3), 25–55 (1998).
Google Scholar
Kaiho, K. Global climatic forcing of deep-sea benthic foraminiferal test size during the past 120 my. Geology 26(6), 491–494 (1998).
Google Scholar
Wang, N., Huang, B. & Dong, Y. The evolution of deepwater dissolved oxygen in the Northern South China Sea during the past 400 ka. In AGU Fall Meeting Abstracts 2016, PP43A-2297 (2016).
Ukpong, A. J. & Macaulay, E. O. Evaluation of paleo-oxygen conditions of Priabonian-Rupelian sediments of the Agbada Formation, Niger delta based on Fisher’s Diversity Index and Benthic Foraminifera Oxygen Index. IJRD. 2(12), 65–80 (2017).
Harzhauser, M. et al. Miocene lithostratigraphy of the northern and central Vienna Basin (Austria). Aust. J. Earth Sci. 113, 169–199 (2020).
Google Scholar
Kranner, M. et al. Miocene ecology of the central and northern Vienna Basin (Austria), based on foraminiferal ecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 581, 110640 (2021).
Loeblich, A. R. & Tappan, H. Foraminiferal Genera and Their Classification (Von Nostrand Reinhold Co., 1987).
Kaminski, M. A. The year 2010 classification of the agglutinated foraminifera. Micropaleontology 60, 89–108 (2014).
Pawlowski, J., Lejzerowicz, F. & Esling, P. Next-generation environmental diversity surveys of foraminifera: Preparing the future. Biol. Bull. 227(2), 93–106 (2014).
Google Scholar
Boersma, A. Foraminifera. In Introduction to Marine Micropaleontology. 19–77 (Elsevier Science BV, 1998).
Piller, W. E. & Haunold, T. G. The Northern Bay of Safaga (Red Sea, Egypt): An Actuopalaeontological Approach V. Foraminifera (Waldemar Kramer Verlag, 1998).
Amao, A. O. et al. Distribution of benthic foraminifera along the Iranian coast. Mar. Biodivers. 49, 399–945 (2019).
Charrieau, L. M. et al. The effects of multiple stressors on the distribution of coastal benthic foraminifera: A case study from the Skagerrak-Baltic Sea region. Mar. Micropaleontol. 139, 42–56 (2018).
Google Scholar
Charrieau, L. M. et al. Rapid environmental responses to climate-induced hydrographic changes in the Baltic Sea entrance. Biogeosciences 16, 3835–3852 (2019).
Google Scholar
Groeneveld, J. et al. Assessing proxy signatures of temperature, salinity, and hypoxia in the Baltic Sea through foraminifera-based geochemistry and faunal assemblages. J. Micropalaeontol. 37, 403–429 (2018).
Google Scholar
García-Gallardo, Á. et al. Benthic foraminifera-based reconstruction of the first Mediterranean-Atlantic exchange in the early Pliocene Gulf of Cadiz. Palaeogeogr. Palaeoclimatol. Palaeoecol. 472, 93–107 (2017).
Rupp, C. & Ćorić, S. Zur Eferding-Formation. Jahrb. Geol. Bundesanst. 155, 33–95 (2015).
Murray, J. W. Ecology and Applications of Benthic Foraminifera (Cambridge University Press, 2006).
Jorissen, F. J., de Stigter, H. C. & Widmark, J. G. A conceptual model explaining benthic foraminiferal microhabitats. Mar. Micropaleontol. 26, 3–15 (1995).
Google Scholar
Garcia, H.E. et al. World Ocean Atlas 2013. Vol. 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. (NOAA Atlas NESDIS 75, 2013).
Murray, J. W. Ecology and Palaeoecology of Benthic Foraminifera. (Longman Scientific and Technical, 1991).
Reymond, C. E., Lloyd, A., Kline, D. I., Dove, S. G. & Pandolfi, J. M. Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Glob. Change Biol. 19, 291–302 (2013).
Google Scholar
Titelboim, D. et al. Selective responses of benthic foraminifera to thermal pollution. Mar. Pollut. Bull. 105, 324–333 (2016).
Google Scholar
Renema, W. Terrestrial influence as a key driver of spatial variability in large benthic foraminiferal assemblage composition in the Central Indo-Pacific. Earth-Sci. Rev. 177, 514–544 (2018).
Google Scholar
Koho, K. A. et al. Sedimentary labile organic carbon and pore water redox control on species distribution of benthic foraminifera: A case study from Lisbon-Setúbal Canyon (southern Portugal). Prog. Oceanogr. 79, 55–82 (2008).
Google Scholar
Source: Ecology - nature.com