in

Canopy arthropod declines along a gradient of olive farming intensification

  • Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Wilson, E. O. The little things that run the world (the importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).

    Google Scholar 

  • Isaacs, R., Tuell, J., Fiedler, A., Gardiner, M. & Landis, D. Maximizing arthropod-mediated ecosystem services in agricultural landscapes: The role of native plants. Front. Ecol. Environ. 7, 196–203 (2009).

    Google Scholar 

  • Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. U.S.A. 118, e2002548117 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neves, B. & Pires, I. M. The Mediterranean diet and the increasing demand of the olive oil sector: Shifts and environmental consequences. Region. 5, 101–112 (2018).

    Google Scholar 

  • Silveira, A. et al. The sustainability of agricultural intensification in the early 21st century: Insights from the olive oil production in Alentejo (Southern Portugal). In Changing Societies: Legacies and Challenges. The Diverse Worlds of Sustainability, 247–275 (2018).

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Salomone, R. & Ioppolo, G. Environmental impacts of olive oil production: A Life Cycle Assessment case study in the province of Messina (Sicily). J. Clean. Prod. 28, 88–100 (2012).

    Google Scholar 

  • Rallo, L. et al. High-density olive plantations. Hortic. Rev. Am. Soc. Hortic. Sci. 41, 303–383 (2013).

    Google Scholar 

  • Santos, S. A. P., Pereira, J. A., Torres, L. M. & Nogueira, A. J. A. Evaluation of the effects, on canopy arthropods, of two agricultural management systems to control pests in olive groves from north-east of Portugal. Chemosphere 67, 131–139 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gkisakis, V., Volakakis, N., Kollaros, D., Bàrberi, P. & Kabourakis, E. M. Soil arthropod community in the olive agroecosystem: Determined by environment and farming practices in different management systems and agroecological zones. Agric. Ecosyst. Environ. 218, 178–189 (2016).

    Google Scholar 

  • Beaufoy, G. EU Policies for Olive Farming. Unsustainable on all counts (WWF and Birdlife International, Brussels, 2001).

    Google Scholar 

  • EFNCP. The environmental impact of olive oil production in the EU: Practical options for improving the environmental impact. European Forum on Nature Conservation and Pastoralism & Asociación para el Análisis y Reforma de la Política Agro-rural, Brussels. https://ec.europa.eu/environment/agriculture/pdf/oliveoil.pdf (2000).

  • Vanwalleghem, T. Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agric. Ecosyst. Environ. 142, 341–351 (2011).

    Google Scholar 

  • Simões, M. P., Belo, A. F., Pinto-Cruz, C. & Pinheiro, A. C. Natural vegetation management to conserve biodiversity and soil water in olive orchards. Span. J. Agric. Res. 12, 633–643 (2014).

    Google Scholar 

  • Milgroom, J., Soriano, M. A., Garrido, J. M., Gómez, J. A. & Fereres, E. The influence of a shift from conventional to organic olive farming on soil management and erosion risk in southern Spain. Renew. Agric. Food Syst. 22, 1–10 (2007).

    Google Scholar 

  • Lodolini, E. M. & Neri, D. Organic olive farming. African J. Agric. Res. 8, 6426–6434 (2013).

    Google Scholar 

  • Rallo, L. Iberian olive growing in a time of change. Chron. Horticult. 49, 27–30 (2010).

    Google Scholar 

  • Diez, C. M. et al. Cultivar and tree density as key factors in the long-term performance of super high-density olive orchards. Front. Plant Sci. 7, 1–13 (2016).

    Google Scholar 

  • Allen, H. D., Randall, R. E., Amable, G. S. & Devereux, B. J. The impact of changing olive cultivation practices on the ground flora of olive groves in the Messara and Psiloritis regions, Crete, Greece. L. Degrad. Dev. 17, 249–327 (2006).

    Google Scholar 

  • Herrera, J. M., Costa, P., Medinas, D., Marques, J. T. & Mira, A. Community composition and activity of insectivorous bats in Mediterranean olive farms. Anim. Conserv. 18, 557–566 (2015).

    Google Scholar 

  • Costa, A. et al. Structural simplification compromises the potential of common insectivorous bats to provide biocontrol services against the major olive pest Prays oleae. Agric. Ecosyst. Environ. 287, 106708 (2020).

    Google Scholar 

  • Morgado, R. et al. A Mediterranean silent spring? The effects of olive farming intensification on breeding bird communities. Agric. Ecosyst. Environ. 288, 106694 (2020).

    Google Scholar 

  • Ruano, F. et al. Use of arthropods for the evaluation of the olive-orchard management regimes. Agric. For. Entomol. 6, 111–120 (2004).

    Google Scholar 

  • Jerez-Valle, C., García, P. A., Campos, M. & Pascual, F. A simple bioindication method to discriminate olive orchard management types using the soil arthropod fauna. Appl. Soil Ecol. 76, 42–51 (2014).

    Google Scholar 

  • Carpio, A. J., Castro, J. & Tortosa, F. S. Arthropod biodiversity in olive groves under two soil management systems: Presence versus absence of herbaceous cover crop. Agric. For. Entomol. 21, 58–68 (2018).

    Google Scholar 

  • Rey, P. J. et al. Landscape-moderated biodiversity effects of ground herb cover in olive groves: Implications for regional biodiversity conservation. Agric. Ecosyst. Environ. 277, 61–73 (2019).

    Google Scholar 

  • Mccomb, W. C. & Noble, R. E. Invertebrate use of natural tree cavities and vertebrate nest boxes. Am. Midl. Nat. 107, 163–172 (1982).

    Google Scholar 

  • Bovyn, R. A., Lordon, M. C., Grecco, A. E., Leeper, A. C. & LaMontagne, J. M. Tree cavity availability in urban cemeteries and city parks. J. Urban Ecol. 5, 1–9 (2019).

    Google Scholar 

  • Ribera, I., Dolédec, S., Downie, I. & Foster, G. Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82, 1112–1129 (2001).

    Google Scholar 

  • Barbaro, L. & van Halder, I. Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography 32, 321–333 (2009).

    Google Scholar 

  • Steffan-Dewenter, I. & Tscharntke, T. Butterfly community structure in fragmented habitats. Ecol. Lett. 3, 449–456 (2000).

    Google Scholar 

  • Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • Medinas, D. et al. Road effects on bat activity depend on surrounding habitat type. Sci. Total Environ. 660, 340–347 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • INE. Estatísticas Agrícolas – 2018. Lisboa. Instituto Nacional de Estatística. https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_publicacoes&PUBLICACOESpub_boui=358629204&PUBLICACOESmodo=2 (2019).

  • Rodríguez-Cohard, J. C., Sánchez-Martínez, J. D. & Garrido-Almonacid, A. Strategic responses of the European olive-growing territories to the challenge of globalization. Eur. Plan. Stud. 28, 2261–2283 (2020).

    Google Scholar 

  • Reis, P. O olival em Portugal. Dinâmicas, tecnologias e relação com o desenvolvimento rural. Instituto Nacional de Investigação Agrária e Veterinária. http://www.iniav.pt/fotos/editor2/caderno_olivalemportugal.pdf (2014).

  • Yi, Z., Jinchao, F., Dayuan, X., Weiguo, S. & Axmacher, J. C. A comparison of terrestrial arthropod sampling methods. J. Resour. Ecol. 3, 174–182 (2012).

    Google Scholar 

  • Leather, S. R. Insect Sampling in Forest Ecosystems (Wiley-Blackwell, New Jersey, 2008).

    Google Scholar 

  • Paredes, D., Cayuela, L. & Campos, M. Synergistic effects of ground cover and adjacent vegetation on natural enemies of olive insect pests. Agric. Ecosyst. Environ. 173, 72–80 (2013).

    Google Scholar 

  • Porcel, M., Cotes, B., Castro, J. & Campos, M. The effect of resident vegetation cover on abundance and diversity of green lacewings (Neuroptera: Chrysopidae) on olive trees. J. Pest Sci. 90, 195–206 (2017).

    Google Scholar 

  • Álvarez, H. A. et al. Semi-natural habitat complexity affects abundance and movement of natural enemies in organic olive orchards. Agric. Ecosyst. Environ. 285, 106618 (2019).

    Google Scholar 

  • Paredes, D., Cayuela, L., Gurr, G. M. & Campos, M. Is ground cover vegetation an effective biological control enhancement strategy against olive pests?. PLoS ONE 10, e0117265 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gkisakis, V. D. et al. Olive canopy arthropods under organic, integrated, and conventional management. The effect of farming practices, climate and landscape. Agroecol. Sustain. Food Syst. 42, 843–858 (2018).

    Google Scholar 

  • Sanz-Cortés, F. et al. Phenological growth stages of olive trees (Olea europaea). Ann. Appl. Biol. 140, 151–157 (2002).

    Google Scholar 

  • Rodríguez, E., González, B. & Campos, M. Natural enemies associated with cereal cover crops in olive groves. Bullet. Insectol. 65, 43–49 (2012).

    Google Scholar 

  • Morente, M., Campos, M. & Ruano, F. Evaluation of two different methods to measure the effects of the management regime on the olive-canopy arthropod community. Agric. Ecosyst. Environ. 259, 111–118 (2018).

    Google Scholar 

  • Cardenas, M., Pascual, F., Campos, M. & Pekar, S. The spider assemblage of olive groves under three management systems. Environ. Entomol. 44, 509–518 (2015).

    PubMed 

    Google Scholar 

  • Hegazi, E. M. et al. Seasonality in the occurrence of two lepidopterous olive pests in Egypt. Insect Sci. 18, 565–574 (2011).

    Google Scholar 

  • Markó, V., Keresztes, B., Fountain, M. T. & Cross, J. V. Prey availability, pesticides and the abundance of orchard spider communities. Biol. Control 48, 115–124 (2009).

    Google Scholar 

  • Picchi, M. S., Marchi, S., Albertini, A. & Petacchi, R. Organic management of olive orchards increases the predation rate of overwintering pupae of Bactrocera oleae (Diptera: Tephritidae). Biol. Control 108, 9–15 (2017).

    Google Scholar 

  • Caruso, T. & Migliorini, M. Micro-arthropod communities under human disturbance: Is taxonomic aggregation a valuable tool for detecting multivariate change? Evidence from Mediterranean soil oribatid coenoses. Acta Oecol. 30, 46–53 (2006).

    ADS 

    Google Scholar 

  • Schipper, A. M., Lotterman, K., Geertsma, M., Leuven, R. S. E. W. & Hendriks, A. J. Using datasets of different taxonomic detail to assess the influence of floodplain characteristics on terrestrial arthropod assemblages. Biodivers. Conserv. 19, 2087–2110 (2010).

    Google Scholar 

  • Timms, L. L., Bowden, J. J., Summerville, K. S. & Buddle, C. M. Does species-level resolution matter? Taxonomic sufficiency in terrestrial arthropod biodiversity studies. Insect Conserv. Divers. 6, 453–462 (2013).

    Google Scholar 

  • Unwin, D. M. A Key to the Families of British Beetles (Field Studies Council, 1984).

  • Goulet, H. & Huber, J. Hymenoptera of the World: An identification Guide to Families. (Agriculture Canada publication, 1993).

  • Johnson, N. F. & Triplehorn, C. A. Borror and DeLong’s Introduction to the Study of Insects 7th edn. (Thomson Brooks/Cole, Belmont, 2005).

    Google Scholar 

  • Fletcher, M. J., and updates. Identification keys and checklists for the leafhoppers, planthoppers and their relatives occurring in Australia and neighbouring areas (Hemiptera: Auchenorrhyncha). https://idtools.dpi.nsw.gov.au/keys/auch/index.html (2009).

  • Mata, L. & Goula, M. Clave de familias de Heterópteros de la Península Ibérica (Insecta, Hemiptera, Heteroptera). Versión 1. Publicaciones del Centre de Recursos de Biodiversitat Animal, Universitat de Barcelona. http://www.ub.edu/crba/publicacions/Clau%20heteropters/Volum4_Clave_de_Familias_de_Heteropteros_de_la_P.Iberica.pdf (2011).

  • Oosterbroek, P. The European families of the Diptera. Identification, diagnosis, biology. (Royal Dutch Society for Natural History (KNNV) Publishing, Utrecht, 2015).

  • World Spider Catalog. Version 19. Natural History Museum Bern. http://wsc.nmbe.ch (2018).

  • Campos, M. Lacewing in Andalusian olive orchards. In Lacewing in the Crop Environment (eds McEwen, P. et al.) 492–497 (Cambridge University Press, Cambridge, 2001).

    Google Scholar 

  • Wilson, E. O. & Hölldobler, B. The rise of the ants: A phylogenetic and ecological explanation. Proc. Natl. Acad. Sci. U. S. A. 102, 7411–7414 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martínez-Núñez, C. et al. Ant community potential for pest control in olive groves: Management and landscape effects. Agric. Ecosyst. Environ 305, 107185 (2021).

    Google Scholar 

  • Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B. 273, 1715–1727 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holland, J. M. et al. Semi-natural habitats support biological control, pollination and soil conservation in Europe. A review. Agron. Sustain. Dev. 37, 31 (2017).

    Google Scholar 

  • Paredes, D. et al. Landscape simplification increases Bactrocera oleae abundance in olive groves: Adult population dynamics in different land uses. J. Pest Sci. https://doi.org/10.1007/s10340-022-01489-1 (2022).

    Article 

    Google Scholar 

  • Thies, C., Roschewitz, I. & Tscharntke, T. The landscape context of cereal aphid–parasitoid interactions. Proc. R. Soc. B. 285, 203–210 (2005).

    Google Scholar 

  • Pinto-Correia, T., Ribeiro, N. & Sá-Sousa, P. Introducing the montado, the cork and holm oak agroforestry system of Southern Portugal. Agrofor. Syst. 82, 99–104 (2011).

    Google Scholar 

  • Morgado, R. et al. Drivers of irrigated olive grove expansion in Mediterranean landscapes and associated biodiversity impacts. Landsc. Urban Plan. 225, 104429 (2022).

    Google Scholar 

  • Direção-Geral do Território. Carta de Uso e Ocupação do Solo de Portugal Continental para 2015 (COS2015). http://www.dgterritorio.pt/dados_abertos/cos/ (2015).

  • Roswell, M., Dushoff, J. & Winfree, R. A conceptual guide to measuring species diversity. Oikos 130, 321–338 (2021).

    Google Scholar 

  • Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Google Scholar 

  • Penado, A. et al. From pastures to forests: Changes in Mediterranean wild bee communities after rural land abandonment. Insect Conserv. Divers. 15, 325–336 (2022).

    Google Scholar 

  • Ovaskainen, O. & Abrego, N. Joint Species Distribution Modelling. With Applications in R. (Cambridge University Press, 2020).

  • Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Google Scholar 

  • Macgregor-Fors, I. & Payton, M. E. Contrasting diversity values: Statistical inferences based on overlapping confidence intervals. PLoS ONE 8, e56794 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tikhonov, G. et al. Joint species distribution modelling with the r-package Hmsc. Methods Ecol. Evol. 11, 442–447 (2019).

    Google Scholar 

  • R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).

    Google Scholar 

  • Wickramasinghe, L. P., Harris, S. H., Jones, G. & Jennings, N. V. Abundance and species richness of nocturnal insects on organic and conventional farms: Effects of agricultural intensification on bat foraging. Conserv. Biol. 8, 1283–1292 (2004).

    Google Scholar 

  • Galloway, A. D., Seymour, C. L., Gaigher, R. & Pryke, J. S. Organic farming promotes arthropod predators, but this depends on neighbouring patches of natural vegetation. Agric. Ecosyst. Environ. 310, 107295 (2021).

    Google Scholar 

  • Hevia, V., Ortega, J., Azcárate, F. M., López, C. A. & González, J. A. Exploring the effect of soil management intensity on taxonomic and functional diversity of ants in Mediterranean olive groves. Agric. For. Entomol. 21, 109–118 (2019).

    Google Scholar 

  • Vitanović, E. et al. Arthropod communities within the olive canopy as bioindicators of different management systems. Span. J. Agric. Res. 16, e0301 (2018).

    Google Scholar 

  • Vasconcelos, S. et al. Long-term consequences of agricultural policy decisions: How are forests planted under EEC regulation 2080/92 affecting biodiversity 20 years later?. Biol. Conserv. 236, 393–403 (2019).

    Google Scholar 

  • Tscharntke, T. et al. When natural habitat fails to enhance biological pest control—five hypotheses. Biol. Conserv. 204, 449–458 (2016).

    Google Scholar 

  • Ortega, M., Pascual, S. & Rescia, A. J. Spatial structure of olive groves and scrublands affects Bactrocera oleae abundance: A multi-scale analysis. Basic Appl. Ecol. 17, 696–705 (2016).

    Google Scholar 

  • Martínez-Núñez, C. et al. Direct and indirect effects of agricultural practices, landscape complexity and climate on insectivorous birds, pest abundance and damage in olive groves. Agric. Ecosyst. Environ. 304, 107145 (2020).

    Google Scholar 

  • Paredes, D., Karp, D. S., Chaplin-Kramer, R., Benítez, E. & Campos, M. Natural habitat increases natural pest control in olive groves: Economic implications. J. Pest Sci. 92, 1111–1121 (2019).

    Google Scholar 

  • Attwood, S. J., Maron, M., House, P. N. & Zammit, C. Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management?. Glob. Ecol. Biogeogr. 17, 585–599 (2008).

    Google Scholar 

  • Miranda, M. A., Miquel, M., Terrassa, J., Melis, N. & Monerris, M. Parasitism of Bactrocera oleae (Diptera; Tephritidae) by Psyttalia concolor (Hymenoptera; Braconidae) in the Balearic Islands (Spain). J. Appl. Entomol. 132, 798–805 (2008).

    Google Scholar 

  • Álvarez, H. A., Morente, M., Campos, M. & Ruano, F. L. madurez de las cubiertas vegetales aumenta la presencia de enemigos naturales y la resiliencia de la red trófica de la copa del olivo. Ecosistemas 28, 92–106 (2019).

    Google Scholar 

  • Rusch, A., Valantin-Morison, M., Sarthou, J. P. & Roger-Estrade, J. Biological control of insect pests in agroecosystems. Effects of crop management, farming systems, and seminatural habitats at the landscape scale: A review. Adv. Agron. 109, 219–259 (2010).

    Google Scholar 

  • Greenop, A., Cook, S. M., Wilby, A., Pywell, R. F. & Woodcock, B. A. Invertebrate community structure predicts natural pest control resilience to insecticide exposure. J. Appl. Ecol. 57, 2441–2453 (2020).

    CAS 

    Google Scholar 

  • Porcel, M., Ruano, F., Cotes, B., Peña, A. & Campos, M. Agricultural management systems affect the green lacewing community (Neuroptera: Chrysopidae) in olive orchards in southern Spain. Environ. Entomol. 42, 97–106 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Stamou, G. P. Arthropods of Mediterranean-Type Ecosystems (Springer, 2012).

  • Santos, J. L. et al. A farming systems approach to linking agricultural policies with biodiversity and ecosystem services. Front. Ecol. Environ. 19, 168–175 (2021).

    Google Scholar 

  • Ribeiro, P. F. et al. An applied farming systems approach to infer conservation-relevant agricultural practices for agri-environment policy design. Land Use Policy 58, 165–172 (2016).

    Google Scholar 

  • Herrera, J. M. et al. A food web approach reveals the vulnerability of biocontrol services by birds and bats to landscape modification at regional scale. Sci. Rep. 11, 1–10 (2021).

    Google Scholar 

  • Solomou, A. D. & Sfougaris, A. I. Bird community characteristics as indicators of sustainable management in olive grove ecosystems of Central Greece. J. Nat. Hist. 49, 301–325 (2015).

    Google Scholar 

  • Piñeiro, V. et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat Sustain. 3, 809–820 (2020).

    Google Scholar 


  • Source: Ecology - nature.com

    Studying floods to better predict their dangers

    Marine heatwaves of different magnitudes have contrasting effects on herbivore behaviour