in

Chemotaxis may assist marine heterotrophic bacterial diazotrophs to find microzones suitable for N2 fixation in the pelagic ocean

  • Karl D, Michaels A, Bergman B, Capone D, Carpenter E, Letelier R, et al. Dinitrogen fixation in the world’s oceans. In: Boyer EW, Howarth RW, editors. The nitrogen cycle at regional to global scales. Dordrecht: Springer; 2002. p. 47–98.

  • Berthelot H, Benavides M, Moisander PH, Grosso O, Bonnet S. High-nitrogen fixation rates in the particulate and dissolved pools in the Western Tropical Pacific (Solomon and Bismarck Seas): N2 fixation in the Western Pacific. Geophys Res Lett. 2017;44:8414–23.

    CAS 
    Article 

    Google Scholar 

  • Rahav E, Bar-Zeev E, Ohayion S, Elifantz H, Belkin N, Herut B, et al. Dinitrogen fixation in aphotic oxygenated marine environments. Front Microbiol. 2013;4:227.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bentzon-Tilia M, Traving SJ, Mantikci M, Knudsen-Leerbeck H, Hansen JL, Markager S, et al. Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries. ISME J. 2015;9:273–85.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Messer LF, Doubell M, Jeffries TC, Brown MV, Seymour JR. Prokaryotic and diazotrophic population dynamics within a large oligotrophic inverse estuary. Aquat Micro Ecol. 2015;74:1–15.

    Article 

    Google Scholar 

  • Sipler RE, Gong D, Baer SE, Sanderson MP, Roberts QN, Mulholland MR, et al. Preliminary estimates of the contribution of Arctic nitrogen fixation to the global nitrogen budget. Limnol Oceanogr Lett. 2017;2:159–66.

    Article 

    Google Scholar 

  • Benavides M, Bonnet S, Berman-Frank I, Riemann L. Deep into oceanic N2 fixation. Front Mar Sci. 2018;5:1–4.

    Article 

    Google Scholar 

  • Mulholland MR, Bernhardt PW, Widner BN, Selden CR, Chappell PD, Clayton S, et al. High rates of N2 fixation in temperate, Western North Atlantic coastal waters expand the realm of marine diazotrophy. Glob Biogeochem Cycles. 2019;33:826–40.

    CAS 
    Article 

    Google Scholar 

  • Zehr JP. Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 2011;19:162–73.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Riemann L, Farnelid H, Steward G. Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity and regulation in marine waters. Aquat Micro Ecol. 2010;61:235–47.

    Article 

    Google Scholar 

  • Farnelid H, Andersson AF, Bertilsson S, Al-Soud WA, Hansen LH, Sørensen S, et al. Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria. PLoS ONE. 2011;6:e19223.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Delmont TO, Quince C, Shaiber A, Esen ÖC, Lee ST, Rappé MS, et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat Microbiol. 2018;3:804–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh H-J, Cuenca M, et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell. 2019;179:1068–1083.e21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bombar D, Paerl RW, Riemann L. Marine non-cyanobacterial diazotrophs: moving beyond molecular detection. Trends Microbiol. 2016;24:916–27.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Moisander PH, Benavides M, Bonnet S, Berman-Frank I, White AE, Riemann L. Chasing after non-cyanobacterial nitrogen fixation in marine pelagic environments. Front Microbiol. 2017;8:1736.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Eady RR, Postgate JR. Nitrogenase. Nature. 1974;249:805–10.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wong PP, Burris RH. Nature of oxygen inhibition of nitrogenase from azotobacter vinelandii. Proc Natl Acad Sci USA 1972;69:672–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Berman-Frank I, Quigg A, Finkel ZV, Irwin AJ, Haramaty L. Nitrogen-fixation strategies and Fe requirements in cyanobacteria. Limnol Oceanogr. 2007;52:2260–9.

    Article 

    Google Scholar 

  • Inomura K, Bragg J, Follows MJ. A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii. ISME J. 2017;11:166–75.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Paerl HW. Microzone formation: its role in the enhancement of aquatic N2 fixation. Limnol Oceanogr. 1985;30:1246–52.

    CAS 
    Article 

    Google Scholar 

  • Paerl HW, Prufert LE. Oxygen-poor microzones as potential sites of microbial N2 fixation in nitrogen-depleted aerobic marine waters. Appl Env Microbiol. 1987;53:1078–87.

    CAS 
    Article 

    Google Scholar 

  • Riemann L, Rahav E, Passow U, Grossart H-P, de Beer D, Klawonn I, et al. Planktonic aggregates as hotspots for heterotrophic diazotrophy: the plot thickens. Front Microbiol. 2022;13:1092.

    Article 

    Google Scholar 

  • Braun ST, Proctor LM, Zani S, Mellon MT, Zehr JP. Molecular evidence for zooplankton-associated nitrogen-fixing anaerobes based on amplification of the nifH gene. FEMS Microbiol Ecol. 1999;28:273–9.

    CAS 
    Article 

    Google Scholar 

  • Farnelid H, Tarangkoon W, Hansen G, Hansen PJ, Riemann L. Putative N2-fixing heterotrophic bacteria associated with dinoflagellate–Cyanobacteria consortia in the low-nitrogen Indian Ocean. Aquat Micro Ecol. 2010;61:105–17.

    Article 

    Google Scholar 

  • Scavotto RE, Dziallas C, Bentzon-Tilia M, Riemann L, Moisander PH. Nitrogen-fixing bacteria associated with copepods in coastal waters of the North Atlantic Ocean: diazotroph community in association with copepods. Environ Microbiol. 2015;17:3754–65.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Farnelid H, Turk-Kubo K, Ploug H, Ossolinski JE, Collins JR, Van Mooy BAS, et al. Diverse diazotrophs are present on sinking particles in the North Pacific Subtropical Gyre. ISME J. 2019;13:170–82.

    PubMed 
    Article 

    Google Scholar 

  • Geisler E, Bogler A, Rahav E, Bar-Zeev E. Direct detection of heterotrophic diazotrophs associated with planktonic aggregates. Sci Rep. 2019;9:1–9.

    CAS 
    Article 

    Google Scholar 

  • Pedersen JN, Bombar D, Paerl RW, Riemann L. Diazotrophs and N2-fixation associated with particles in coastal estuarine waters. Front Microbiol. 2018;9:2759.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Paerl RW, Hansen TNG, Henriksen NNSE, Olesen AK, Riemann L. N2-fixation and related O2 constraints on model marine diazotroph Pseudomonas stutzeri BAL361. Aquat Micro Ecol. 2018;81:125–36.

    Article 

    Google Scholar 

  • Rahav E, Giannetto MJ, Bar-Zeev E. Contribution of mono and polysaccharides to heterotrophic N2 fixation at the eastern Mediterranean coastline. Sci Rep. 2016;6:27858.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chakraborty S, Andersen KH, Visser AW, Inomura K, Follows MJ, Riemann L. Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine particles. Nat Commun. 2021;12:4085.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stocker R, Seymour JR, Samadani A, Hunt DE, Polz MF. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc Natl Acad Sci USA 2008;105:4209–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stocker R, Seymour JR. Ecology and physics of bacterial chemotaxis in the ocean. Microbiol Mol Biol Rev. 2012;76:792–812.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Garren M, Son K, Raina J-B, Rusconi R, Menolascina F, Shapiro OH, et al. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J. 2014;8:999–1007.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Son K, Menolascina F, Stocker R. Speed-dependent chemotactic precision in marine bacteria. Proc Natl Acad Sci USA 2016;113:8624–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brumley DR, Carrara F, Hein AM, Yawata Y, Levin SA, Stocker R. Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc Natl Acad Sci USA 2019;116:10792–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Müller‐Niklas G, Stefan S, Kaltenböok E, Herndl GJ. Organic content and bacterial metabolism in amorphous aggregations of the northern Adriatic Sea. Limnol Oceanogr. 1994;39:58–68.

    Article 

    Google Scholar 

  • Grossart H-P, Czub G, Simon M. Algae–bacteria interactions and their effects on aggregation and organic matter flux in the sea. Environ Microbiol. 2006;8:1074–84.

    PubMed 
    Article 

    Google Scholar 

  • Smith DC, Simon M, Alldredge AL, Azam F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature. 1992;359:139–42.

    CAS 
    Article 

    Google Scholar 

  • Kiørboe T, Ploug H, Thygesen UH. Fluid motion and solute distribution around sinking aggregates. I. Small-scale fluxes and heterogeneity of nutrients in the pelagic environment. Mar Ecol Prog Ser. 2001;211:1–13.

    Article 

    Google Scholar 

  • Kiørboe T, Jackson GA. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol Oceanogr. 2001;46:1309–18.

    Article 

    Google Scholar 

  • Raina J-B, Lambert BS, Parks DH, Rinke C, Siboni N, Bramucci A, et al. Chemotaxis shapes the microscale organisation of the ocean’s microbiome. Nature. 2022;605:132–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lambert BS, Raina J-B, Fernandez VI, Rinke C, Siboni N, Rubino F, et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat Microbiol. 2017;2:1344–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Clerc EE, Raina J-B, Lambert BS, Seymour J, Stocker R. In situ chemotaxis assay to examine microbial behavior in aquatic ecosystems. J Vis Exp. 2020;159:e61062.

    Google Scholar 

  • Boström KH, Riemann L, Kühl M, Hagström Å. Isolation and gene quantification of heterotrophic N2-fixing bacterioplankton in the Baltic Sea. Environ Microbiol. 2007;9:152–64.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Farnelid H, Harder J, Bentzon-Tilia M, Riemann L. Isolation of heterotrophic diazotrophic bacteria from estuarine surface waters: heterotrophic diazotrophs in the Baltic Sea. Environ Microbiol. 2014;16:3072–82.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • ZoBell CE. Studies on Marine Bacteria I. The cultural requirements of heterotrophic aerobes. J Mar Res. 1941;4:41–75.

  • Alldredge AL, Gotschalk C, Passow U, Riebesell U. Mass aggregation of diatom blooms: Insights from a mesocosm study. Deep Sea Res Part II Top Stud Oceanogr. 1995;42:9–27.

    CAS 
    Article 

    Google Scholar 

  • Thornton DCO. Diatom aggregation in the sea: mechanisms and ecological implications. Eur J Phycol. 2002;37:149–61.

    Article 

    Google Scholar 

  • Turner J. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat Micro Ecol. 2002;27:57–102.

    Article 

    Google Scholar 

  • Schnetzer A, Lampe RH, Benitez-Nelson CR, Marchetti A, Osburn CL, Tatters AO. Marine snow formation by the toxin-producing diatom, Pseudo-nitzschia australis. Harmful Algae. 2017;61:23–30.

    CAS 
    Article 

    Google Scholar 

  • Dittmar T, Koch B, Hertkorn N, Kattner G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol Oceanogr Methods. 2008;6:230–5.

    CAS 
    Article 

    Google Scholar 

  • Marie D, Partensky F, Jacquet S, Vaulot D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR green. Appl Environ Microbiol. 1997;63:186–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bramucci AR, Focardi A, Rinke C, Hugenholtz P, Tyson GW, Seymour JR, et al. Microvolume DNA extraction methods for microscale amplicon and metagenomic studies. ISME Commun. 2021;1:1–5.

    Article 

    Google Scholar 

  • Rinke C, Low S, Woodcroft BJ, Raina J-B, Skarshewski A, Le XH, et al. Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics. PeerJ. 2016;4:e2486.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv13033997 Q-Bio. 2013.

  • Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics. 2007;23:1282–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Clarke KR, Gorley RN, Somerfield PJ, Warwick RM. Change in marine communities: an approach to statistical analysis and interpretation. 3rd ed. Plymouth: Primer-E Ltd; 2014.

  • Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Edler D, Klein J, Antonelli A, Silvestro D. raxmlGUI 2.0 beta: a graphical interface and toolkit for phylogenetic analyses using RAxML. bioRxiv. 2019. https://doi.org/10.1101/800912.

  • Barbera P, Kozlov AM, Czech L, Morel B, Darriba D, Flouri T, et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst Biol. 2019;68:365–9.

    PubMed 
    Article 

    Google Scholar 

  • Czech L, Barbera P, Stamatakis A. Genesis and Gappa: processing, analyzing and visualizing phylogenetic (placement) data. Bioinformatics. 2020;36:3263–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.

    CAS 

    Google Scholar 

  • Bentzon-Tilia M, Severin I, Hansen LH, Riemann L. Genomics and ecophysiology of heterotrophic nitrogen-fixing bacteria isolated from estuarine surface water. mBio. 2015;6:e00929–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Martínez-Pérez C, Mohr W, Schwedt A, Dürschlag J, Callbeck CM, Schunck H, et al. Metabolic versatility of a novel N2-fixing Alphaproteobacterium isolated from a marine oxygen minimum zone: novel N2-fixer from oxygen minimum zone off Peru. Environ Microbiol. 2018;20:755–68.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.

    Article 
    CAS 

    Google Scholar 

  • Eschemann A, Kühl M, Cypionka H. Aerotaxis in Desulfovibrio. Environ Microbiol. 1999;1:489–94.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhu S, Kojima S, Homma M. Structure, gene regulation and environmental response of flagella in Vibrio. Front Microbiol. 2013;4:410.

  • Silva MA, Salgueiro CA. Multistep signaling in nature: a close-up of Geobacter chemotaxis sensing. Int J Mol Sci. 2021;22:9034.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Taylor BL, Zhulin IB, Johnson MS. Aerotaxis and other energy-sensing behavior in bacteria. Annu Rev Microbiol. 1999;53:103–28.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Colin R, Sourjik V. Emergent properties of bacterial chemotaxis pathway. Curr Opin Microbiol. 2017;39:24–33.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stocker R. Marine microbes see a sea of gradients. Science. 2012;338:628–33.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Turk‐Kubo KA, Karamchandani M, Capone DG, Zehr JP. The paradox of marine heterotrophic nitrogen fixation: abundances of heterotrophic diazotrophs do not account for nitrogen fixation rates in the Eastern Tropical South Pacific. Environ Microbiol. 2014;16:3095–114.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Bentzon-Tilia M, Farnelid H, Jürgens K, Riemann L. Cultivation and isolation of N2-fixing bacteria from suboxic waters in the Baltic Sea. FEMS Microbiol Ecol. 2014;88:358–71.

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Risk assessment for the native anurans from an alien invasive species, American bullfrogs (Lithobates catesbeianus), in South Korea

    Modeling geographical invasions of Solenopsis invicta influenced by land-use patterns