in

Clay and climatic variability explain the global potential distribution of Juniperus phoenicea toward restoration planning

  • Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science (80-) https://doi.org/10.1126/science.aai9214 (2017).

    Article 

    Google Scholar 

  • Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Thuiller, W. et al. Consequences of climate change on the tree of life in Europe. Nature 470, 531–534 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zimmermann, N. E., Edwards, T. C. Jr., Graham, C. H., Pearman, P. B. & Svenning, J. New trends in species distribution modelling. Ecography (Cop.) 33, 985–989 (2010).

    Article 

    Google Scholar 

  • Norberg, A. et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. 89, e01370 (2019).

    Article 

    Google Scholar 

  • Smeraldo, S. et al. Generalists yet different: Distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mamm. Rev. 51, 571–584 (2021).

    Article 

    Google Scholar 

  • Sohlström, E. H. et al. Future climate and land-use intensification modify arthropod community structure. Agric. Ecosyst. Environ. 327, 107830 (2022).

    Article 
    CAS 

    Google Scholar 

  • Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Stohlgren, T. J. et al. Ensemble habitat mapping of invasive plant species. Risk Anal. Int. J. 30, 224–235 (2010).

    Article 

    Google Scholar 

  • Meller, L. et al. Ensemble distribution models in conservation prioritization: from consensus predictions to consensus reserve networks. Divers. Distrib. 20, 309–321 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dubuis, A. et al. Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. J. Veg. Sci. 24, 593–606 (2013).

    Article 

    Google Scholar 

  • Walthert, L. & Meier, E. S. Tree species distribution in temperate forests is more influenced by soil than by climate. Ecol. Evol. 7, 9473–9484 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Figueiredo, F. O. G. et al. Beyond climate control on species range: The importance of soil data to predict distribution of Amazonian plant species. J. Biogeogr. 45, 190–200 (2018).

    Article 

    Google Scholar 

  • Arar, A., Nouidjem, Y., Bounar, R., Tabet, S. & Kouba, Y. Potential future changes of the geographic range size of Juniperus phoenicea in Algeria based on present and future climate change projections. Contemp. Probl. Ecol. 13, 429–441 (2020).

    Article 

    Google Scholar 

  • Coudun, C., Gégout, J., Piedallu, C. & Rameau, J. Soil nutritional factors improve models of plant species distribution: An illustration with Acer campestre (L.) in France. J. Biogeogr. 33, 1750–1763 (2006).

    Article 

    Google Scholar 

  • Buri, A. et al. What are the most crucial soil variables for predicting the distribution of mountain plant species? A comprehensive study in the Swiss Alps. J. Biogeogr. 47, 1143–1153 (2020).

    Article 

    Google Scholar 

  • Buri, A. et al. Soil factors improve predictions of plant species distribution in a mountain environment. Prog. Phys. Geogr. 41, 703–722 (2017).

    Article 

    Google Scholar 

  • Mod, H. K., Scherrer, D., Luoto, M. & Guisan, A. What we use is not what we know: environmental predictors in plant distribution models. J. Veg. Sci. 27, 1308–1322 (2016).

    Article 

    Google Scholar 

  • Scherrer, D. & Guisan, A. Ecological indicator values reveal missing predictors of species distributions. Sci. Rep. 9, 1–8 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Boulos, L. Flora of Egypt, Vol. 1. vol. 1 (Al Hadara Publishing, 1999).

  • Farjon, A. & Filer, D. An atlas of the world’s conifers: An analysis of their distribution, biogeography, diversity and conservation status. (Brill, 2013).

  • Allen, DJ. Juniperus phoenicea. The IUCN red list of threatened species 2017: e.T16348983A99965052. https://doi.org/10.2305/IUCN.UK.2017-2.RLTS. T16348983A99965052.en. Downloaded on 19 May 2020

  • El-Bana, M., Shaltout, K., Khalafallah, A. & Mosallam, H. Ecological status of the Mediterranean Juniperus phoenicea L. relicts in the desert mountains of North Sinai Egypt. Flora-Morphol. Distrib. Funct. Ecol. Plants 205, 171–178 (2010).

    Article 

    Google Scholar 

  • Moustafa, A. et al. Ecological Prominence of Juniperus phoenicea L. Growing in Gebel Halal, North Sinai Egypt. Catrina Int. J. Environ. Sci. 15, 11–23 (2016).

    Google Scholar 

  • Farahat, E. A. Age structure and static life tables of the endangered Juniperus phoenicea L. in North Sinai Mountains, Egypt. J. Mt. Sci. 17, 2170–2178 (2020).

    Article 

    Google Scholar 

  • El-Wahab, A. Condition assessment of plant diversity of Gebel Maghara, North Sinai, Egypt. Catrina Int. J. Environ. Sci. 3, 21–40 (2008).

    Google Scholar 

  • Youssef, A. M., Morsy, A. A., Mosallam, H. A. & Hashim, A. M. Vegetation and soil relationships in some wadis from the North-Central part of Sinai Peninsula Egypt. Minia Sci. Bull. 25, 1–28 (2014).

    Google Scholar 

  • Fisher, M. Decline in the juniper woodlands of Raydah Reserve in southwestern Saudi Arabia: A response to climate changes?. Glob. Ecol. Biogeogr. Lett. 6, 379–386 (1997).

    Article 

    Google Scholar 

  • Salvà-Catarineu, M. et al. Past, present, and future geographic range of the relict Mediterranean and Macaronesian Juniperus phoenicea complex. Ecol. Evol. 11, 5075–5095 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Quevedo, L., Rodrigo, A. & Espelta, J. M. Post-fire resprouting ability of 15 non-dominant shrub and tree species in Mediterranean areas of NE Spain. Ann. For. Sci. 64(8), 883–890 (2007).

    Article 

    Google Scholar 

  • Trabucco, A. & Zomer, R. J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consort. Spat. Inf. 89, 1–2 (2009).

    Google Scholar 

  • Hengl, T. et al. SoilGrids1km—Global soil information based on automated mapping. PLoS One 9, e105992 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Documentation for the global human modification of terrestrial systems (2020).

  • Naimi, B. & Araújo, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography (Cop.) 39, 368–375 (2016).

    Article 

    Google Scholar 

  • Naimi, B. usdm: Uncertainty analysis for species distribution models. R Packag. Version 1, 1–12 (2015).

    Google Scholar 

  • Guisan, A., Thuiller, W. & Zimmermann, N. E. In Habitat Suitability and Distribution Models: With Applications in R. (Cambridge University Press, 2017).

  • Dakhil, M. A. et al. Global invasion risk assessment of Prosopis juliflora at biome level : Does soil matter?. Biology 10, 203 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Iturbide, M., Bedia, J. & Gutiérrez, J. M. Background sampling and transferability of species distribution model ensembles under climate change. Glob. Planet. Change 166, 19–29 (2018).

    ADS 
    Article 

    Google Scholar 

  • Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).

    Article 

    Google Scholar 

  • Zhang, Z., Mammola, S., Xian, W. & Zhang, H. Modelling the potential impacts of climate change on the distribution of ichthyoplankton in the Yangtze Estuary, China. Divers. Distrib. 26, 126–137 (2020).

    Article 

    Google Scholar 

  • Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1–9 (2019).

    CAS 
    Article 

    Google Scholar 

  • Breiner, F. T., Nobis, M. P., Bergamini, A. & Guisan, A. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods Ecol. Evol. 9, 802–808 (2018).

    Article 

    Google Scholar 

  • Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337–348 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Haider, S. M., Benscoter, A. M., Pearlstine, L., D’Acunto, L. E. & Romañach, S. S. Landscape-scale drivers of endangered Cape Sable Seaside Sparrow (Ammospiza maritima mirabilis) presence using an ensemble modeling approach. Ecol. Modell. 461, 109774 (2021).

    Article 

    Google Scholar 

  • Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Article 

    Google Scholar 

  • Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge University Press, 2010).

    Book 

    Google Scholar 

  • Kabiel, H. F., Hegazy, A. K., Lovett-Doust, L., Al-Rowaily, S. L. & Al Borki, A. E. N. S. Ecological assessment of populations of Juniperus phoenicea L. in the Al-Akhdar mountainous landscape of Libya. Arid L. Res. Manag. 30, 269–289 (2016).

    Article 

    Google Scholar 

  • Camarero, J. J. et al. Dieback and mortality of junipers caused by drought: Dissimilar growth and wood isotope patterns preceding shrub death. Agric. For. Meteorol. 291, 108078 (2020).

    ADS 
    Article 

    Google Scholar 

  • Sánchez-Salguero, R. & Camarero, J. J. Greater sensitivity to hotter droughts underlies juniper dieback and mortality in Mediterranean shrublands. Sci. Total Environ. 721, 137599 (2020).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 8, 972–980 (2018).

    ADS 
    Article 

    Google Scholar 

  • Forzieri, G. et al. Ensemble projections of future streamflow droughts in Europe. Hydrol. Earth Syst. Sci. 18, 85–108 (2014).

    ADS 
    Article 

    Google Scholar 

  • González-Hidalgo, J. C. et al. High-resolution spatio-temporal analyses of drought episodes in the western Mediterranean basin (Spanish mainland, Iberian Peninsula). Acta Geophys. 66, 381–392 (2018).

    ADS 
    Article 

    Google Scholar 

  • Stockhecke, M. et al. Millennial to orbital-scale variations of drought intensity in the Eastern Mediterranean. Quat. Sci. Rev. 133, 77–95 (2016).

    ADS 
    Article 

    Google Scholar 

  • Navarro Cerrillo, R. M. et al. Can habitat prediction models contribute to the restoration and conservation of the threatened tree Abies pinsapo Boiss. in Southern Spain?. New For. 52, 89–112 (2021).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Risk assessment for the native anurans from an alien invasive species, American bullfrogs (Lithobates catesbeianus), in South Korea

    Modeling geographical invasions of Solenopsis invicta influenced by land-use patterns