Middleton, N., Stringer, L., Goudie, A., & Thomas, D. The Forgotten Billion: MDG Achievement in the Drylands (UNDP United Nations Convention to Combat Desertification, 2011).
Soong, J. L., Phillips, C. L., Ledna, C., Koven, C. D. & Torn, M. S. CMIP5 models predict rapid and deep soil warming over the 21st century. J. Geophys. Res. 125, e2019JG005266 (2020).
Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).
Google Scholar
Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).
Google Scholar
Schlaepfer, D. et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 8, 14196 (2017).
Google Scholar
Jiang, H. in The End of Desertification? (eds Behnke, R. & Mortimore, M.) 513–536 (Springer, 2016).
Gadzama, N. M. Attenuation of the effects of desertification through sustainable development of Great Green Wall in the Sahel of Africa. World J. Sci. Technol. Sustain. Dev. 14, 279–289 (2017).
Google Scholar
United Nations Decade on Restoration (accessed January 2021); https://www.decadeonrestoration.org/
Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017).
Google Scholar
Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).
Google Scholar
Megdal, S. B. Transboundary groundwater resources: sustainable management and conflict resolution. Groundwater 55, 701–702 (2017).
Google Scholar
Jarvis, W.T. in Advances in Groundwater Governance (eds Villholth, K. G. et al.) 177–192 (CRC Press, 2017).
Bastin, J.-F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).
Google Scholar
Brandt, M. et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587, 78–82 (2020).
Google Scholar
Mbow, C. The Great Green Wall in the Sahel. Oxf. Res. Encycl. Clim. Sci. https://doi.org/10.1093/acrefore/9780190228620.013.559 (2017).
Petrie, M. D. et al. Climate change may restrict dryland forest regeneration in the 21st century. Ecology 98, 1548–1559 (2017).
Google Scholar
Liu, S., Jiang, D. & Lang, X. Mid-Holocene drylands: a multi-model analysis using Paleoclimate Modelling Intercomparison Project Phase III (PMIP3) simulations. Holocene 29, 1425–1438 (2019).
Google Scholar
Delgado-Baquerizo, M. et al. Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities. Nat. Ecol. Evol. 1, 1339–1347 (2017).
Google Scholar
Delgado-Baquerizo, M. et al. Effects of climate legacies on above- and belowground community assembly. Glob. Change Biol. 24, 4330–4339 (2018).
Google Scholar
Hoelzmann, P. et al. Mid-Holocene land-surface conditions in northern Africa and the Arabian Peninsula: a data set for the analysis of biogeophysical feedbacks in the climate system. Glob. Biogeochem. Cycles 12, 35–51 (1998).
Google Scholar
Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).
Google Scholar
Smettem, K. R. J., Waring, R. H., Callow, J. N., Wilson, M. & Mu, Q. Satellite-derived estimates of forest leaf area index in southwest Western Australia are not tightly coupled to interannual variations in rainfall: implications for groundwater decline in a drying climate. Glob. Change Biol. 19, 2401–2412 (2013).
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
Schmidt, R. et al. GRACE observations of changes in continental water storage. Glob. Planet. Change 50, 112–126 (2006).
Google Scholar
Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
Google Scholar
Friedl, M. A. et al. ISLSCP II MODIS (Collection 4) IGBP Land Cover, 2000–2001 (ORNL DAAC, Oak Ridge, TN, USA, 2010); https://doi.org/10.3334/ORNLDAAC/968
Chen, M. et al. Global land use for 2015–2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Sci. Data 7, 320 (2020).
Google Scholar
National Centre for Earth Observation & Los, S.O. Global Vegetation Height Frequency Distributions from the ICESAT GLAS instrument produced as part of the National Centre for Earth Observation (NCEO) (NERC Earth Observation Data Centre, accessed 10 December 2020); http://catalogue.ceda.ac.uk/uuid/85e7d70a74244c73b71446940e05cde6
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
Google Scholar
Cherlet, M. et al. World Atlas of Desertification: Rethinking Land Degradation and Sustainable Land Management (Publications Office of the European Union, 2018).
Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V. & Petoukhov, V. The influence of vegetation-atmosphere-ocean interaction on climate during the mid-holocene. Science 280, 1916–1919 (1998).
Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Google Scholar
Scheffer, M. Tipping Points (Princeton Univ. Press, 2009).
Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).
Google Scholar
Runyan, C. W. & D’Odorico, P. Global Deforestation (Cambridge Univ. Press, 2016).
Herzschuh, U. et al. Global taxonomically harmonized pollen data set for Late Quaternary with revised chronologies (LegacyPollen 1.0). PANGAEA https://doi.org/10.1594/PANGAEA.929773 (2021).
Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).
Google Scholar
Belsky, A. J. et al. The effects of trees on their physical, chemical and biological environments in a semi-arid savanna in Kenya. J. Appl. Ecol. 26, 1005–1024 (1989).
Google Scholar
Li, C. et al. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2, 858–873 (2021).
Google Scholar
Tatebe, H. et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 12, 2727–2765 (2019).
Google Scholar
Trees, Forests and Land Use in Drylands: the First Global Assessment. Full Report (FAO, 2019).
Diallo, H. A. in The Future of Drylands (eds Lee, C. & Schaaf, T.) 13–16 (Springer, 2008).
A Spatial Analysis Approach to the Global Delineation of Dryland Areas of Relevance to the CBD Programme of Work on Dry and Subhumid Lands (UNEP-WCMC, 2014).
Abatzoglou, J. et al. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).
Google Scholar
Tachikawa, T., Hato, M., Kaku, M. & Iwasaki, A. Characteristics of ASTER GDEM version 2. IEEE Int. Geosci. Remote Sens. Symp. Proc. https://doi.org/10.1109/igarss.2011.6050017 (2011).
Alibakhshi, S., Crowther, T. W. & Naimi, B. Land surface black-sky albedo at a fixed solar zenith angle and its relation to forest structure during peak growing season based on remote sensing data. Data Brief. 31, 105720 (2020).
Google Scholar
Hamazaki, T. Advanced land observation satellite (ALOS). 5 Outline of ALOS satellite system. J. Jpn Soc. Photogramm. Remote Sens. 38, 25–26 (1999).
Mu, Q., Zhao, M., & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).https://doi.org/10.1016/j.rse.2011.02.019
Zlotnicki, V., Bettadpur, S., Landerer, F. W. & Watkins, M. M. in Encyclopedia of Sustainability Science and Technology (ed. Meyers, R. A.) 4563–4584 (Springer, 2012).https://doi.org/10.1007/978-1-4419-0851-3_745
Schepaschenko, D. et al. Comment on ‘The extent of forest in dryland biomes’. Science 358, 6362 (2017).
Google Scholar
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Google Scholar
Cheng, G., Han, J. & Lu, X. Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105, 1865–1883 (2017).
Google Scholar
Xia, X., Xu, C. & Nan, B. Inception-v3 for flower classification. In Proc. 2nd International Conference on Image, Vision and Computing (ICIVC) 783–787 (IEEE, 2017).
Fei-Fei, L., Deng, J. & Li, K. ImageNet: constructing a large-scale image database. J. Vis. 9, 1037 (2010).
Google Scholar
Guirado, E. et al. Tree cover estimation in global drylands from space using deep learning. Remote Sens. 12, 343 (2020).
Google Scholar
Legendre, P., Borcard, D. & Roberts, D. W. Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology 93, 1234–1240 (2012).
Google Scholar
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
Google Scholar
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Google Scholar
Lahouar, A. & Slama, J. B. H. Day-ahead load forecast using random forest and expert input selection. Energy Convers. Manage. 103, 1040–1051 (2015).
Google Scholar
Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI 14, 1137–1145 (1995).
Piñeiro, G., Perelman, S., Guerschman, J. P. & Paruelo, J. M. How to evaluate models: observed vs. predicted or predicted vs. observed? Ecol. Model. 216, 316–322 (2008).
Google Scholar
Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2019); https://doi.org/10.5067/MODIS/MCD12Q1.006
The CMIP6 landscape. Nat. Clim. Change 9, 727 (2019).
Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109.1, 213–241 (2011).
Google Scholar
Cao, X. et al. A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr. Earth Syst. Sci. Data 12, 119–135 (2020).
Google Scholar
Cao, X. et al. A late Quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: set up and evaluation. Rev. Palaeobot. Palynol. 194, 21–37 (2013).
Google Scholar
Li, C. et al. Harmonized chronologies of a global late Quaternary pollen dataset (LegacyAge 1.0). PANGAEA https://doi.org/10.1594/PANGAEA.933132 (2021).
GlobalTreeSearch Online Database (Botanic Gardens Conservation International, UK, accessed 20 January 2022); https://tools.bgci.org/global_tree_search.php
Source: Ecology - nature.com