in

Climate legacies drive the distribution and future restoration potential of dryland forests

  • Middleton, N., Stringer, L., Goudie, A., & Thomas, D. The Forgotten Billion: MDG Achievement in the Drylands (UNDP United Nations Convention to Combat Desertification, 2011).

  • Soong, J. L., Phillips, C. L., Ledna, C., Koven, C. D. & Torn, M. S. CMIP5 models predict rapid and deep soil warming over the 21st century. J. Geophys. Res. 125, e2019JG005266 (2020).

    Google Scholar 

  • Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).

    Article 

    Google Scholar 

  • Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schlaepfer, D. et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 8, 14196 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jiang, H. in The End of Desertification? (eds Behnke, R. & Mortimore, M.) 513–536 (Springer, 2016).

  • Gadzama, N. M. Attenuation of the effects of desertification through sustainable development of Great Green Wall in the Sahel of Africa. World J. Sci. Technol. Sustain. Dev. 14, 279–289 (2017).

    Article 

    Google Scholar 

  • United Nations Decade on Restoration (accessed January 2021); https://www.decadeonrestoration.org/

  • Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017).

    Article 

    Google Scholar 

  • Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).

    Article 

    Google Scholar 

  • Megdal, S. B. Transboundary groundwater resources: sustainable management and conflict resolution. Groundwater 55, 701–702 (2017).

    CAS 
    Article 

    Google Scholar 

  • Jarvis, W.T. in Advances in Groundwater Governance (eds Villholth, K. G. et al.) 177–192 (CRC Press, 2017).

  • Bastin, J.-F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brandt, M. et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587, 78–82 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Mbow, C. The Great Green Wall in the Sahel. Oxf. Res. Encycl. Clim. Sci. https://doi.org/10.1093/acrefore/9780190228620.013.559 (2017).

  • Petrie, M. D. et al. Climate change may restrict dryland forest regeneration in the 21st century. Ecology 98, 1548–1559 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, S., Jiang, D. & Lang, X. Mid-Holocene drylands: a multi-model analysis using Paleoclimate Modelling Intercomparison Project Phase III (PMIP3) simulations. Holocene 29, 1425–1438 (2019).

    Article 

    Google Scholar 

  • Delgado-Baquerizo, M. et al. Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities. Nat. Ecol. Evol. 1, 1339–1347 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Delgado-Baquerizo, M. et al. Effects of climate legacies on above- and belowground community assembly. Glob. Change Biol. 24, 4330–4339 (2018).

    Article 

    Google Scholar 

  • Hoelzmann, P. et al. Mid-Holocene land-surface conditions in northern Africa and the Arabian Peninsula: a data set for the analysis of biogeophysical feedbacks in the climate system. Glob. Biogeochem. Cycles 12, 35–51 (1998).

    CAS 
    Article 

    Google Scholar 

  • Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Smettem, K. R. J., Waring, R. H., Callow, J. N., Wilson, M. & Mu, Q. Satellite-derived estimates of forest leaf area index in southwest Western Australia are not tightly coupled to interannual variations in rainfall: implications for groundwater decline in a drying climate. Glob. Change Biol. 19, 2401–2412 (2013).

    Article 

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • Schmidt, R. et al. GRACE observations of changes in continental water storage. Glob. Planet. Change 50, 112–126 (2006).

    Article 

    Google Scholar 

  • Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Friedl, M. A. et al. ISLSCP II MODIS (Collection 4) IGBP Land Cover, 2000–2001 (ORNL DAAC, Oak Ridge, TN, USA, 2010); https://doi.org/10.3334/ORNLDAAC/968

  • Chen, M. et al. Global land use for 2015–2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Sci. Data 7, 320 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • National Centre for Earth Observation & Los, S.O. Global Vegetation Height Frequency Distributions from the ICESAT GLAS instrument produced as part of the National Centre for Earth Observation (NCEO) (NERC Earth Observation Data Centre, accessed 10 December 2020); http://catalogue.ceda.ac.uk/uuid/85e7d70a74244c73b71446940e05cde6

  • Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cherlet, M. et al. World Atlas of Desertification: Rethinking Land Degradation and Sustainable Land Management (Publications Office of the European Union, 2018).

  • Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V. & Petoukhov, V. The influence of vegetation-atmosphere-ocean interaction on climate during the mid-holocene. Science 280, 1916–1919 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Scheffer, M. Tipping Points (Princeton Univ. Press, 2009).

  • Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Runyan, C. W. & D’Odorico, P. Global Deforestation (Cambridge Univ. Press, 2016).

  • Herzschuh, U. et al. Global taxonomically harmonized pollen data set for Late Quaternary with revised chronologies (LegacyPollen 1.0). PANGAEA https://doi.org/10.1594/PANGAEA.929773 (2021).

  • Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Belsky, A. J. et al. The effects of trees on their physical, chemical and biological environments in a semi-arid savanna in Kenya. J. Appl. Ecol. 26, 1005–1024 (1989).

    Article 

    Google Scholar 

  • Li, C. et al. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2, 858–873 (2021).

    Article 

    Google Scholar 

  • Tatebe, H. et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 12, 2727–2765 (2019).

    CAS 
    Article 

    Google Scholar 

  • Trees, Forests and Land Use in Drylands: the First Global Assessment. Full Report (FAO, 2019).

  • Diallo, H. A. in The Future of Drylands (eds Lee, C. & Schaaf, T.) 13–16 (Springer, 2008).

  • A Spatial Analysis Approach to the Global Delineation of Dryland Areas of Relevance to the CBD Programme of Work on Dry and Subhumid Lands (UNEP-WCMC, 2014).

  • Abatzoglou, J. et al. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tachikawa, T., Hato, M., Kaku, M. & Iwasaki, A. Characteristics of ASTER GDEM version 2. IEEE Int. Geosci. Remote Sens. Symp. Proc. https://doi.org/10.1109/igarss.2011.6050017 (2011).

  • Alibakhshi, S., Crowther, T. W. & Naimi, B. Land surface black-sky albedo at a fixed solar zenith angle and its relation to forest structure during peak growing season based on remote sensing data. Data Brief. 31, 105720 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hamazaki, T. Advanced land observation satellite (ALOS). 5 Outline of ALOS satellite system. J. Jpn Soc. Photogramm. Remote Sens. 38, 25–26 (1999).

    Google Scholar 

  • Mu, Q., Zhao, M., & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).https://doi.org/10.1016/j.rse.2011.02.019

  • Zlotnicki, V., Bettadpur, S., Landerer, F. W. & Watkins, M. M. in Encyclopedia of Sustainability Science and Technology (ed. Meyers, R. A.) 4563–4584 (Springer, 2012).https://doi.org/10.1007/978-1-4419-0851-3_745

  • Schepaschenko, D. et al. Comment on ‘The extent of forest in dryland biomes’. Science 358, 6362 (2017).

    Article 
    CAS 

    Google Scholar 

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cheng, G., Han, J. & Lu, X. Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105, 1865–1883 (2017).

    Article 

    Google Scholar 

  • Xia, X., Xu, C. & Nan, B. Inception-v3 for flower classification. In Proc. 2nd International Conference on Image, Vision and Computing (ICIVC) 783–787 (IEEE, 2017).

  • Fei-Fei, L., Deng, J. & Li, K. ImageNet: constructing a large-scale image database. J. Vis. 9, 1037 (2010).

    Article 

    Google Scholar 

  • Guirado, E. et al. Tree cover estimation in global drylands from space using deep learning. Remote Sens. 12, 343 (2020).

    Article 

    Google Scholar 

  • Legendre, P., Borcard, D. & Roberts, D. W. Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology 93, 1234–1240 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Article 

    Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar 

  • Lahouar, A. & Slama, J. B. H. Day-ahead load forecast using random forest and expert input selection. Energy Convers. Manage. 103, 1040–1051 (2015).

    Article 

    Google Scholar 

  • Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI 14, 1137–1145 (1995).

    Google Scholar 

  • Piñeiro, G., Perelman, S., Guerschman, J. P. & Paruelo, J. M. How to evaluate models: observed vs. predicted or predicted vs. observed? Ecol. Model. 216, 316–322 (2008).

    Article 

    Google Scholar 

  • Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2019); https://doi.org/10.5067/MODIS/MCD12Q1.006

  • The CMIP6 landscape. Nat. Clim. Change 9, 727 (2019).

  • Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109.1, 213–241 (2011).

    Article 
    CAS 

    Google Scholar 

  • Cao, X. et al. A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr. Earth Syst. Sci. Data 12, 119–135 (2020).

    Article 

    Google Scholar 

  • Cao, X. et al. A late Quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: set up and evaluation. Rev. Palaeobot. Palynol. 194, 21–37 (2013).

    Article 

    Google Scholar 

  • Li, C. et al. Harmonized chronologies of a global late Quaternary pollen dataset (LegacyAge 1.0). PANGAEA https://doi.org/10.1594/PANGAEA.933132 (2021).

  • GlobalTreeSearch Online Database (Botanic Gardens Conservation International, UK, accessed 20 January 2022); https://tools.bgci.org/global_tree_search.php


  • Source: Ecology - nature.com

    Helping cassava farmers by extending crop life

    Plant phenology changes and drivers on the Qinghai–Tibetan Plateau