Hu, S., Niu, Z., Chen, Y., Li, L. & Zhang, H. Global wetlands: Potential distribution, wetland loss, and status. Sci. Total Environ. 586, 319–327 (2017).
Google Scholar
Guo, M., Li, J., Sheng, C., Xu, J. & Wu, L. A review of wetland remote sensing. Sensors 17, 777 (2017).
Google Scholar
Mingwu, Z., Haijiang, J., Desuo, C. & Chunbo, J. The comparative study on the ecological sensitivity analysis in Huixian karst wetland, China. Procedia Environ. Sci. 2, 386–398 (2010).
Google Scholar
Li, Z., Jin, Z. & Li, Q. Changes in Land Use and their Effectson Soil Properties in Huixian KarstWetland System. Pol. J. Environ. Stud. 26, 699–707 (2017).
Google Scholar
Jiang, X., Xiong, Z., Liu, H., Liu, G. & Liu, W. Distribution, source identification, and ecological risk assessment of heavy metals in wetland soils of a river–reservoir system. Environ. Sci. Pollut. Res. 24, 436–444 (2016).
Google Scholar
Fu, B. et al. Comparison of optimized object-based RF-DT algorithm and SegNet algorithm for classifying Karst wetland vegetation communities using ultra-high spatial resolution UAV data. Int. J. Appl. Earth Obs. Geoinf. 104, 102553 (2021).
Xu, D. et al. Distribution, speciation, environmental risk, and source identification of heavy metals in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China. Environ. Sci. Pollut. Res. 23, 9122–9133 (2016).
Google Scholar
Gao, P. et al. Spatial and temporal changes of P and Ca distribution and fractionation in soil and sediment in a karst farmland-wetland system. Chemosphere 220, 644–650 (2019).
Google Scholar
Gil-Márquez, J. M., Barberá, J. A., Andreo, B. & Mudarra, M. Hydrological and geochemical processes constraining groundwater salinity in wetland areas related to evaporitic (karst) systems. A case study from Southern Spain. J. Hydrol. 544, 538–554 (2017).
Chamberlin, C. A. et al. Mass balance implies Holocene development of a low-relief karst patterned landscape. Chem. Geol. 527, 118782 (2019).
Google Scholar
Watts, A. C. et al. Evidence of biogeomorphic patterning in a low-relief karst landscape. Earth Surf. Proc. Land. 39, 2027–2037 (2014).
Google Scholar
Fan, Z., Li, J., Yue, T., Zhou, X. & Lan, A. Scenarios of land cover in Karst area of Southwestern China. Environ. Earth Sci. 74, 6407–6420 (2015).
Google Scholar
Wang, S., Zhang, L., Zhang, H., Han, X. & Zhang, L. Spatial-temporal wetland landcover changes of poyang lake derived from landsat and HJ-1A/B data in the dry season from 1973–2019. Remote Sens. 12, 1595 (2020).
Google Scholar
Szabó, L., Deák, B., Bíró, T., Dyke, G. J. & Szabó, S. NDVI as a proxy for estimating sedimentation and vegetation spread in artificial lakes—monitoring of spatial and temporal changes by using satellite images overarching three decades. Remote Sens. 12, 1468 (2020).
Google Scholar
Malekmohammadi, B. & Rahimi Blouchi, L. Ecological risk assessment of wetland ecosystems using multi criteria decision making and geographic information system. Ecol. Indic. 41, 133–144 (2014).
Google Scholar
Tian, Y. et al. Monitoring invasion process of spartina alterniflora by seasonal sentinel-2 imagery and an object-based random forest classification. Remote Sens. 12, 1383 (2020).
Google Scholar
Lane, C. et al. Improved wetland classification using eight-band high resolution satellite imagery and a hybrid approach. Remote Sens. 6, 12187–12216 (2014).
Google Scholar
Betbeder, J., Rapinel, S., Corgne, S., Pottier, E. & Hubert-Moy, L. TerraSAR-X dual-pol time-series for mapping of wetland vegetation. ISPRS J. Photogramm. Remote. Sens. 107, 90–98 (2015).
Google Scholar
Franklin, S. E., Skeries, E. M., Stefanuk, M. A. & Ahmed, O. S. Wetland classification using Radarsat-2 SAR quad-polarization and Landsat-8 OLI spectral response data: A case study in the Hudson Bay Lowlands Ecoregion. Int. J. Remote Sens. 39, 1615–1627 (2017).
Google Scholar
Cao, J. et al. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models. Remote Sens. 10, 89 (2018).
Google Scholar
Liu, T. & Abd-Elrahman, A. Multi-view object-based classification of wetland land covers using unmanned aircraft system images. Remote Sens. Environ. 216, 122–138 (2018).
Google Scholar
Churches, C. E., Wampler, P. J., Sun, W. & Smith, A. J. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data. Int. J. Appl. Earth Obs. Geoinf. 30, 203–216 (2014).
Google Scholar
Gerke, M. & Xiao, J. Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification. ISPRS J. Photogramm. Remote. Sens. 87, 78–92 (2014).
Google Scholar
Maulik, U. & Chakraborty, D. Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery. ISPRS J. Photogramm. Remote. Sens. 77, 66–78 (2013).
Google Scholar
Crasto, N. et al. A LiDAR-based decision-tree classification of open water surfaces in an Arctic delta. Remote Sens. Environ. 164, 90–102 (2015).
Google Scholar
O’Neil, G. L., Goodall, J. L. & Watson, L. T. Evaluating the potential for site-specific modification of LiDAR DEM derivatives to improve environmental planning-scale wetland identification using Random Forest classification. J. Hydrol. 559, 192–208 (2018).
Google Scholar
Howard, A. G. Some improvements on deep convolutional neural network based image classification. arXiv.org https://doi.org/10.48550/arXiv.1805.07836 (2013).
Yao, X. et al. Land use classification of the deep convolutional neural network method reducing the loss of spatial features. Sensors 19, 2792 (2019).
Google Scholar
Chen, Y., Fan, R., Yang, X., Wang, J. & Latif, A. Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning. Water 10, 585 (2018).
Google Scholar
Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018).
Google Scholar
Srinivas, S., Subramanya, A. & Babu, R. V. Training Sparse Neural Networks. in 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE, 2017).
Liang, S., Lan, Y., Jiang, S., Li, Y. & Lu, Z. The activities of microbial communities in Huixian Wetland sediments under the interactive toxicity of Cu(II) and pentachloronitrobenzene. Acta Ecol. Sin. 37, 379–391 (2017).
Google Scholar
Feng, W. Fish diversity in huixian wetland in guangxi. Wetland Science 44, (2017).
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Google Scholar
Mutanga, O., Adam, E. & Cho, M. A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 18, 399–406 (2012).
Google Scholar
van Beijma, S., Comber, A. & Lamb, A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens. Environ. 149, 118–129 (2014).
Google Scholar
Badrinarayanan, V., Kendall, A. & Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017).
Google Scholar
Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Int. Conf. Mach. Learn. 37, 448–456 (2015).
Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 3431–3440 (IEEE, 2015).
Chen, L.-C., Barron, J. T., Papandreou, G., Murphy, K. & Yuille, A. L. semantic image segmentation with task-specific edge detection using CNNs and a discriminatively trained domain transform. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 4545–4546 (IEEE, 2016).
Eigen, D. & Fergus, R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. in 2015 IEEE International Conference on Computer Vision (ICCV) (IEEE, 2015).
Hu, Y. et al. Deep learning classification of coastal wetland hyperspectral image combined spectra and texture features: A case study of Huanghe (Yellow) River Estuary wetland. Acta Oceanol. Sin. 38, 142–150 (2019).
Google Scholar
Liu, F. & Fang, M. Semantic segmentation of underwater images based on improved Deeplab. J. Marine Sci. Eng. 8, 188 (2020).
Google Scholar
Dronova, I. Object-based image analysis in wetland research: A review. Remote Sens. 7, 6380–6413 (2015).
Google Scholar
Zhang, Z. & Sabuncu, M. R. Generalized cross entropy loss for training deep neural networks with noisy labels. arXiv.org https://arxiv.org/abs/1805.07836 (2018).
Ruder, S. An overview of gradient descent optimization algorithms. arXiv.org https://arxiv.org/abs/1609.04747 (2016).
Song, S. et al. Intelligent object recognition of urban water bodies based on deep learning for multi-source and multi-temporal high spatial resolution remote sensing imagery. Sensors 20, 397 (2020).
Google Scholar
Sun, G. et al. Fusion of multiscale convolutional neural networks for building extraction in very high-resolution images. Remote Sens. 11, 227 (2019).
Google Scholar
Al-Najjar, H. A. H. et al. Land cover classification from fused DSM and UAV images using convolutional neural networks. Remote Sens. 11, 1461 (2019).
Google Scholar
Villoslada, M. et al. Fine scale plant community assessment in coastal meadows using UAV based multispectral data. Ecol. Ind. 111, 105979 (2020).
Google Scholar
Zhao, H. & Liu, H. Multiple classifiers fusion and CNN feature extraction for handwritten digits recognition. Granul. Comput. 5, 411–418 (2019).
Google Scholar
Hu, K., Zhang, S. & Zhao, X. Context-based conditional random fields as recurrent neural networks for image labeling. Multimedia Tools Appl. 79, 17135–17145 (2019).
Google Scholar
Wang, M. et al. Assessing texture features to classify coastal wetland vegetation from high spatial resolution imagery using completed local binary patterns (CLBP). Remote Sens. 10, 778 (2018).
Google Scholar
Szantoi, Z., Escobedo, F., Abd-Elrahman, A., Smith, S. & Pearlstine, L. Analyzing fine-scale wetland composition using high resolution imagery and texture features. Int. J. Appl. Earth Obs. Geoinf. 23, 204–212 (2013).
Google Scholar
Bhatnagar, S., Gill, L., Regan, S., Waldren, S. & Ghosh, B. A nested drone-satellite approach to monitoring the ecological conditions of wetlands. ISPRS J. Photogramm. Remote. Sens. 174, 151–165 (2021).
Google Scholar
Source: Ecology - nature.com