in

Comparison of multi-class and fusion of multiple single-class SegNet model for mapping karst wetland vegetation using UAV images

  • Hu, S., Niu, Z., Chen, Y., Li, L. & Zhang, H. Global wetlands: Potential distribution, wetland loss, and status. Sci. Total Environ. 586, 319–327 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Guo, M., Li, J., Sheng, C., Xu, J. & Wu, L. A review of wetland remote sensing. Sensors 17, 777 (2017).

    ADS 
    PubMed Central 
    Article 

    Google Scholar 

  • Mingwu, Z., Haijiang, J., Desuo, C. & Chunbo, J. The comparative study on the ecological sensitivity analysis in Huixian karst wetland, China. Procedia Environ. Sci. 2, 386–398 (2010).

    Article 

    Google Scholar 

  • Li, Z., Jin, Z. & Li, Q. Changes in Land Use and their Effectson Soil Properties in Huixian KarstWetland System. Pol. J. Environ. Stud. 26, 699–707 (2017).

    Article 

    Google Scholar 

  • Jiang, X., Xiong, Z., Liu, H., Liu, G. & Liu, W. Distribution, source identification, and ecological risk assessment of heavy metals in wetland soils of a river–reservoir system. Environ. Sci. Pollut. Res. 24, 436–444 (2016).

    Article 
    CAS 

    Google Scholar 

  • Fu, B. et al. Comparison of optimized object-based RF-DT algorithm and SegNet algorithm for classifying Karst wetland vegetation communities using ultra-high spatial resolution UAV data. Int. J. Appl. Earth Obs. Geoinf. 104, 102553 (2021).

    Google Scholar 

  • Xu, D. et al. Distribution, speciation, environmental risk, and source identification of heavy metals in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China. Environ. Sci. Pollut. Res. 23, 9122–9133 (2016).

    CAS 
    Article 

    Google Scholar 

  • Gao, P. et al. Spatial and temporal changes of P and Ca distribution and fractionation in soil and sediment in a karst farmland-wetland system. Chemosphere 220, 644–650 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gil-Márquez, J. M., Barberá, J. A., Andreo, B. & Mudarra, M. Hydrological and geochemical processes constraining groundwater salinity in wetland areas related to evaporitic (karst) systems. A case study from Southern Spain. J. Hydrol. 544, 538–554 (2017).

  • Chamberlin, C. A. et al. Mass balance implies Holocene development of a low-relief karst patterned landscape. Chem. Geol. 527, 118782 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Watts, A. C. et al. Evidence of biogeomorphic patterning in a low-relief karst landscape. Earth Surf. Proc. Land. 39, 2027–2037 (2014).

    ADS 
    Article 

    Google Scholar 

  • Fan, Z., Li, J., Yue, T., Zhou, X. & Lan, A. Scenarios of land cover in Karst area of Southwestern China. Environ. Earth Sci. 74, 6407–6420 (2015).

    Article 

    Google Scholar 

  • Wang, S., Zhang, L., Zhang, H., Han, X. & Zhang, L. Spatial-temporal wetland landcover changes of poyang lake derived from landsat and HJ-1A/B data in the dry season from 1973–2019. Remote Sens. 12, 1595 (2020).

    ADS 
    Article 

    Google Scholar 

  • Szabó, L., Deák, B., Bíró, T., Dyke, G. J. & Szabó, S. NDVI as a proxy for estimating sedimentation and vegetation spread in artificial lakes—monitoring of spatial and temporal changes by using satellite images overarching three decades. Remote Sens. 12, 1468 (2020).

    ADS 
    Article 

    Google Scholar 

  • Malekmohammadi, B. & Rahimi Blouchi, L. Ecological risk assessment of wetland ecosystems using multi criteria decision making and geographic information system. Ecol. Indic. 41, 133–144 (2014).

    Article 

    Google Scholar 

  • Tian, Y. et al. Monitoring invasion process of spartina alterniflora by seasonal sentinel-2 imagery and an object-based random forest classification. Remote Sens. 12, 1383 (2020).

    ADS 
    Article 

    Google Scholar 

  • Lane, C. et al. Improved wetland classification using eight-band high resolution satellite imagery and a hybrid approach. Remote Sens. 6, 12187–12216 (2014).

    ADS 
    Article 

    Google Scholar 

  • Betbeder, J., Rapinel, S., Corgne, S., Pottier, E. & Hubert-Moy, L. TerraSAR-X dual-pol time-series for mapping of wetland vegetation. ISPRS J. Photogramm. Remote. Sens. 107, 90–98 (2015).

    ADS 
    Article 

    Google Scholar 

  • Franklin, S. E., Skeries, E. M., Stefanuk, M. A. & Ahmed, O. S. Wetland classification using Radarsat-2 SAR quad-polarization and Landsat-8 OLI spectral response data: A case study in the Hudson Bay Lowlands Ecoregion. Int. J. Remote Sens. 39, 1615–1627 (2017).

    Article 

    Google Scholar 

  • Cao, J. et al. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models. Remote Sens. 10, 89 (2018).

    ADS 
    Article 

    Google Scholar 

  • Liu, T. & Abd-Elrahman, A. Multi-view object-based classification of wetland land covers using unmanned aircraft system images. Remote Sens. Environ. 216, 122–138 (2018).

    ADS 
    Article 

    Google Scholar 

  • Churches, C. E., Wampler, P. J., Sun, W. & Smith, A. J. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data. Int. J. Appl. Earth Obs. Geoinf. 30, 203–216 (2014).

    ADS 

    Google Scholar 

  • Gerke, M. & Xiao, J. Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification. ISPRS J. Photogramm. Remote. Sens. 87, 78–92 (2014).

    ADS 
    Article 

    Google Scholar 

  • Maulik, U. & Chakraborty, D. Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery. ISPRS J. Photogramm. Remote. Sens. 77, 66–78 (2013).

    ADS 
    Article 

    Google Scholar 

  • Crasto, N. et al. A LiDAR-based decision-tree classification of open water surfaces in an Arctic delta. Remote Sens. Environ. 164, 90–102 (2015).

    ADS 
    Article 

    Google Scholar 

  • O’Neil, G. L., Goodall, J. L. & Watson, L. T. Evaluating the potential for site-specific modification of LiDAR DEM derivatives to improve environmental planning-scale wetland identification using Random Forest classification. J. Hydrol. 559, 192–208 (2018).

    ADS 
    Article 

    Google Scholar 

  • Howard, A. G. Some improvements on deep convolutional neural network based image classification. arXiv.org https://doi.org/10.48550/arXiv.1805.07836 (2013).

  • Yao, X. et al. Land use classification of the deep convolutional neural network method reducing the loss of spatial features. Sensors 19, 2792 (2019).

    ADS 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, Y., Fan, R., Yang, X., Wang, J. & Latif, A. Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning. Water 10, 585 (2018).

    Article 

    Google Scholar 

  • Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018).

    ADS 
    Article 

    Google Scholar 

  • Srinivas, S., Subramanya, A. & Babu, R. V. Training Sparse Neural Networks. in 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE, 2017).

  • Liang, S., Lan, Y., Jiang, S., Li, Y. & Lu, Z. The activities of microbial communities in Huixian Wetland sediments under the interactive toxicity of Cu(II) and pentachloronitrobenzene. Acta Ecol. Sin. 37, 379–391 (2017).

    Article 

    Google Scholar 

  • Feng, W. Fish diversity in huixian wetland in guangxi. Wetland Science 44, (2017).

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH 
    Article 

    Google Scholar 

  • Mutanga, O., Adam, E. & Cho, M. A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 18, 399–406 (2012).

    ADS 

    Google Scholar 

  • van Beijma, S., Comber, A. & Lamb, A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens. Environ. 149, 118–129 (2014).

    ADS 
    Article 

    Google Scholar 

  • Badrinarayanan, V., Kendall, A. & Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Int. Conf. Mach. Learn. 37, 448–456 (2015).

    Google Scholar 

  • Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 3431–3440 (IEEE, 2015).

  • Chen, L.-C., Barron, J. T., Papandreou, G., Murphy, K. & Yuille, A. L. semantic image segmentation with task-specific edge detection using CNNs and a discriminatively trained domain transform. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 4545–4546 (IEEE, 2016).

  • Eigen, D. & Fergus, R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. in 2015 IEEE International Conference on Computer Vision (ICCV) (IEEE, 2015).

  • Hu, Y. et al. Deep learning classification of coastal wetland hyperspectral image combined spectra and texture features: A case study of Huanghe (Yellow) River Estuary wetland. Acta Oceanol. Sin. 38, 142–150 (2019).

    Article 

    Google Scholar 

  • Liu, F. & Fang, M. Semantic segmentation of underwater images based on improved Deeplab. J. Marine Sci. Eng. 8, 188 (2020).

    Article 

    Google Scholar 

  • Dronova, I. Object-based image analysis in wetland research: A review. Remote Sens. 7, 6380–6413 (2015).

    ADS 
    Article 

    Google Scholar 

  • Zhang, Z. & Sabuncu, M. R. Generalized cross entropy loss for training deep neural networks with noisy labels. arXiv.org https://arxiv.org/abs/1805.07836 (2018).

  • Ruder, S. An overview of gradient descent optimization algorithms. arXiv.org https://arxiv.org/abs/1609.04747 (2016).

  • Song, S. et al. Intelligent object recognition of urban water bodies based on deep learning for multi-source and multi-temporal high spatial resolution remote sensing imagery. Sensors 20, 397 (2020).

    ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Sun, G. et al. Fusion of multiscale convolutional neural networks for building extraction in very high-resolution images. Remote Sens. 11, 227 (2019).

    ADS 
    Article 

    Google Scholar 

  • Al-Najjar, H. A. H. et al. Land cover classification from fused DSM and UAV images using convolutional neural networks. Remote Sens. 11, 1461 (2019).

    ADS 
    Article 

    Google Scholar 

  • Villoslada, M. et al. Fine scale plant community assessment in coastal meadows using UAV based multispectral data. Ecol. Ind. 111, 105979 (2020).

    Article 

    Google Scholar 

  • Zhao, H. & Liu, H. Multiple classifiers fusion and CNN feature extraction for handwritten digits recognition. Granul. Comput. 5, 411–418 (2019).

    Article 

    Google Scholar 

  • Hu, K., Zhang, S. & Zhao, X. Context-based conditional random fields as recurrent neural networks for image labeling. Multimedia Tools Appl. 79, 17135–17145 (2019).

    Article 

    Google Scholar 

  • Wang, M. et al. Assessing texture features to classify coastal wetland vegetation from high spatial resolution imagery using completed local binary patterns (CLBP). Remote Sens. 10, 778 (2018).

    ADS 
    Article 

    Google Scholar 

  • Szantoi, Z., Escobedo, F., Abd-Elrahman, A., Smith, S. & Pearlstine, L. Analyzing fine-scale wetland composition using high resolution imagery and texture features. Int. J. Appl. Earth Obs. Geoinf. 23, 204–212 (2013).

    ADS 

    Google Scholar 

  • Bhatnagar, S., Gill, L., Regan, S., Waldren, S. & Ghosh, B. A nested drone-satellite approach to monitoring the ecological conditions of wetlands. ISPRS J. Photogramm. Remote. Sens. 174, 151–165 (2021).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Development of microsatellites markers for the deep coral Madracis myriaster (Pocilloporidae: Anthozoa)

    Proximity to small-scale inland and coastal fisheries is associated with improved income and food security