Newton, I. The Migration Ecology of Birds (Academic Press, 2008).
Dingle, H. Migration: The Biology of Life on the Move (Oxford Univ. Press, 1996).
Chapman, J. W. et al. Animal orientation strategies for movement in flows. Curr. Biol. 21, R861–R870 (2011).
Google Scholar
Alerstam, T. Wind as a selective agent in bird migration. Ornis Scand. 10, 76–93 (1979).
Google Scholar
Berthold, P. Bird Migration: A General Survey (Oxford Univ. Press, 2001).
Alerstam, T. & Lindstrom, A. in Bird Migration: Physiology and Ecophysiology (ed. Gwinner, E.) 331–351 (Springer, 1990).
Chapman, J. W. et al. Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Curr. Biol. 18, 514–518 (2008).
Google Scholar
Hays, G. C. et al. Route optimisation and solving Zermelo’s navigation problem during long distance migration in cross flows. Ecol. Lett. 17, 137–143 (2014).
Google Scholar
Chapman, J. W. et al. Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind. J. Anim. Ecol. 85, 115–124 (2016).
Google Scholar
Alerstam, T. Optimal bird migration revisited. J. Ornithol. 152, 5–23 (2011).
Google Scholar
Alerstam, T. & Hedenström, A. The development of bird migration theory. J. Avian Biol. 29, 343–369 (1998).
Google Scholar
Shamoun, J., Felix, B. & Wouter, L. Atmospheric conditions create freeways, detours and tailbacks for migrating birds. J. Comp. Physiol. A 203, 509–529 (2017).
Google Scholar
Liechti, F. Birds: Blowin’ by the wind? J. Ornithol. 147, 202–211 (2006).
Google Scholar
Thorup, K., Alerstam, T., Hake, M. & Kjellén, N. Bird orientation: compensation for wind drift in migrating raptors is age dependent. Proc. R. Soc. B 270, 8–11 (2003).
Google Scholar
Sergio, F. et al. Migration by breeders and floaters of a long-lived raptor: implications for recruitment and territory quality. Anim. Behav. 131, 59–72 (2017).
Google Scholar
Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).
Google Scholar
Sergio, F., Blas, J. & Hiraldo, F. Predictors of floater status in a long-lived bird: a cross-sectional and longitudinal test of hypotheses. J. Anim. Ecol. 78, 109–118 (2009).
Google Scholar
Bildstein, K. L. Migrating Raptors of the World: Their Ecology and Conservation (Cornell Univ. Press, 2006).
Zalles, J. I. & Bildstein, K. L. Raptor Watch: A Global Directory of Raptor Migration Sites (Birdlife International, 2000).
Kerlinger, P. Flight Strategies of Migrating Hawks (University of Chicago Press, 1989).
Sergio, F. et al. When and where mortality occurs throughout the annual cycle changes with age in a migratory bird: individual vs population implications. Sci. Rep. 9, 17352 (2019).
Google Scholar
Sergio, F. et al. Raptor nest decorations are a reliable threat against conspecifics. Science 331, 327–330 (2011).
Google Scholar
Parker, D. & Diop-Kane, M. Meteorology of Tropical West Africa: The Forecaster’s Handbook (2017).
Liechti, F., Hedenström, A. & Alerstam, T. Effects of sidewinds on optimal flight speed of birds. J. Theor. Biol. 170, 219–225 (1994).
Google Scholar
Liechti, F. & Bruderer, B. The relevance of wind for optimal migration theory. J. Avian Biol. 29, 561–568 (1998).
Google Scholar
Cresswell, W. Migratory connectivity of Palaearctic–African migratory birds and their responses to environmental change: the serial residency hypothesis. Ibis 156, 493–510 (2014).
Google Scholar
Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).
Google Scholar
Bowlin, M. S. et al. Grand challenges in migration biology. Integr. Comp. Biol. 50, 261–279 (2010).
Google Scholar
Mitchell, G. W., Woodworth, B. K., Taylor, P. D. & Norris, D. R. Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird. Mov. Ecol. https://doi.org/10.1186/s40462-015-0046-5 (2015).
Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).
Horvitz, N. et al. The gliding speed of migrating birds: slow and safe or fast and risky? Ecol. Lett. 17, 670–679 (2014).
Google Scholar
Reichler, T. Changes in the Atmospheric Circulation as Indicator of Climate Change (Elsevier, 2009).
Kling, M. M. & Ackerly, D. D. Global wind patterns and the vulnerability of wind-dispersed species to climate change. Nat. Clim. Change 10, 868–875 (2020).
Google Scholar
Drake, A., Rock, C. A., Quinlan, S. P., Martin, M. & Green, D. J. Wind speed during migration influences the survival, timing of breeding, and productivity of a neotropical migrant, Setophaga petechia. PLoS ONE 9, e97152 (2014).
Google Scholar
Newton, I. Can conditions experienced during migration limit the population levels of birds? J. Ornithol. 147, 146–166 (2006).
Google Scholar
Loonstra, A. H. J., Verhoeven, M. A., Senner, N. R., Both, C. & Piersma, T. Adverse wind conditions during northward Sahara crossings increase the in-flight mortality of black-tailed godwits. Ecol. Lett. 22, 2060–2066 (2019).
Google Scholar
Blas, J., Sergio, F. & Hiraldo, F. Age-related improvement in reproductive performance in a long-lived raptor: a cross-sectional and longitudinal study. Ecography 32, 647–657 (2009).
Google Scholar
Sergio, F. et al. No effect of satellite tagging on survival, recruitment, longevity, productivity and social dominance of a raptor, and the provisioning and condition of its offspring. J. Appl. Ecol. 52, 1665–1675 (2015).
Google Scholar
Kenward, R. A Manual for Wildlife Radio Tagging (Academic Press, 2001).
Hersbach, H., et al. ERA5 hourly data on pressure levels from 1979 to present. Copernicus Climate Change Service Climate Data Store https://doi.org/10.24381/cds.bd0915c6 (2018).
Klaassen, R. H. G., Hake, M., Strandberg, R. & Alerstam, T. Geographical and temporal flexibility in the response to crosswinds by migrating raptors. Proc. R. Soc. B 278, 1339–1346 (2011).
Google Scholar
Bohrer, G. et al. Estimating updraft velocity components over large spatial scales: contrasting migration strategies of golden eagles and turkey vultures. Ecol. Lett. 15, 96–103 (2012).
Google Scholar
Shannon, H. D., Young, G. S., Yates, M. A., Fuller, M. R. & Seegar, W. S. Measurements of thermal updraft intensity over complex terrain using American white pelicans and a simple boundary-layer forecast model. Bound. Layer Meteorol. 104, 167–199 (2002).
Google Scholar
Stull, R. B. An Introduction to Boundary Layer Meteorology (Springer, 1988).
Safi, K. et al. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight. Mov. Ecol. 1, 1–13 (2013).
Google Scholar
Batschelet, E. Circular Statistics in Biology (Academic Press, 1981).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
O’Neill, P. Magnetoreception and baroreception in birds. Dev. Growth Differ. 55, 188–197 (2013).
Google Scholar
Bingman, V.P. and Moore, P. in Aeroecology (eds. Chilson, P. B. et al.) 119–143 (Springer International Publishing, 2017).
Liechti, F. and McGuire, L. P. in Aeroecology (eds. Chilson, P. B. et al.) 179–198 (Springer International Publishing, 2017).
Richardson, W. J. Wind and orientation of migrating birds: a review. EXS 60, 226–249 (1991).
Google Scholar
Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).
Google Scholar
Dodge, S. et al. Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America. Philos. Trans. R. Soc. B 369, 20130195 (2014).
Google Scholar
Schaub, M., Kania, W. & Köppen, U. Variation of primary production during winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. J. Anim. Ecol. 74, 656–666 (2005).
Google Scholar
Despland, E., Rosenberg, J. & Simpson, S. J. Landscape structure and locust swarming: a satellite’s eye view. Ecography 27, 381–391 (2004).
Google Scholar
Trierweiler, C. et al. A Palaearctic migratory raptor species tracks shifting prey availability within its wintering range in the Sahel. J. Anim. Ecol. 82, 107–120 (2013).
Google Scholar
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).
Sapir, N., Horvitz, N., Dechmann, D. K. N., Fahr, J. & Wikelski, M. Commuting fruit bats beneficially modulate their flight in relation to wind. Proc. R. Soc. B 281, 20140018 (2014).
Google Scholar
Becciu, P., Panuccio, M., Catoni, C., Dell’omo, G. & Sapir, N. Contrasting aspects of tailwinds and asymmetrical response to crosswinds in soaring migrants. Behav. Ecol. Sociobiol. 72, 28 (2018).
Google Scholar
Klaassen, R. H. G. et al. Loop migration in adult marsh harriers Circus aeruginosus, as revealed by satellite telemetry. J. Avian Biol. 41, 200–207 (2010).
Google Scholar
Strandberg, R., Klaassen, R. H. G., Hake, M. & Alerstam, T. How hazardous is the Sahara Desert crossing for migratory birds? Indications from satellite tracking of raptors. Biol. Lett. 6, 297–300 (2010).
Google Scholar
Pennycuick, D. J. Modelling the Flying Bird (Academic Press, 2008).
Shepard, E. L. C., Ross, A. N. & Portugal, S. J. Moving in a moving medium: new perspectives on flight. Phil. Trans. R. Soc. B 371, 20150382 (2016).
Google Scholar
Van Doren, B. M., Horton, K. G., Stepanian, P. M., Mizrahi, D. S. & Farnsworth, A. Wind drift explains the reoriented morning flights of songbirds. Behav. Ecol. 27, 1122–1131 (2016).
Google Scholar
Sergio, F., Tanferna, A., Blas, J., Blanco, G. & Hiraldo, F. Reliable methods for identifying animal deaths in GPS- and satellite-tracking data: review, testing, and calibration. J. Appl. Ecol. 56, 562–572 (2019).
Google Scholar
Crawley, M. J. The R Book (Wiley, 2013).
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
Google Scholar
Source: Ecology - nature.com