in

Compensation for wind drift during raptor migration improves with age through mortality selection

  • Newton, I. The Migration Ecology of Birds (Academic Press, 2008).

  • Dingle, H. Migration: The Biology of Life on the Move (Oxford Univ. Press, 1996).

  • Chapman, J. W. et al. Animal orientation strategies for movement in flows. Curr. Biol. 21, R861–R870 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alerstam, T. Wind as a selective agent in bird migration. Ornis Scand. 10, 76–93 (1979).

    Article 

    Google Scholar 

  • Berthold, P. Bird Migration: A General Survey (Oxford Univ. Press, 2001).

  • Alerstam, T. & Lindstrom, A. in Bird Migration: Physiology and Ecophysiology (ed. Gwinner, E.) 331–351 (Springer, 1990).

  • Chapman, J. W. et al. Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Curr. Biol. 18, 514–518 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hays, G. C. et al. Route optimisation and solving Zermelo’s navigation problem during long distance migration in cross flows. Ecol. Lett. 17, 137–143 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Chapman, J. W. et al. Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind. J. Anim. Ecol. 85, 115–124 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Alerstam, T. Optimal bird migration revisited. J. Ornithol. 152, 5–23 (2011).

    Article 

    Google Scholar 

  • Alerstam, T. & Hedenström, A. The development of bird migration theory. J. Avian Biol. 29, 343–369 (1998).

    Article 

    Google Scholar 

  • Shamoun, J., Felix, B. & Wouter, L. Atmospheric conditions create freeways, detours and tailbacks for migrating birds. J. Comp. Physiol. A 203, 509–529 (2017).

    Article 
    CAS 

    Google Scholar 

  • Liechti, F. Birds: Blowin’ by the wind? J. Ornithol. 147, 202–211 (2006).

    Article 

    Google Scholar 

  • Thorup, K., Alerstam, T., Hake, M. & Kjellén, N. Bird orientation: compensation for wind drift in migrating raptors is age dependent. Proc. R. Soc. B 270, 8–11 (2003).

    Article 

    Google Scholar 

  • Sergio, F. et al. Migration by breeders and floaters of a long-lived raptor: implications for recruitment and territory quality. Anim. Behav. 131, 59–72 (2017).

    Article 

    Google Scholar 

  • Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sergio, F., Blas, J. & Hiraldo, F. Predictors of floater status in a long-lived bird: a cross-sectional and longitudinal test of hypotheses. J. Anim. Ecol. 78, 109–118 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Bildstein, K. L. Migrating Raptors of the World: Their Ecology and Conservation (Cornell Univ. Press, 2006).

  • Zalles, J. I. & Bildstein, K. L. Raptor Watch: A Global Directory of Raptor Migration Sites (Birdlife International, 2000).

  • Kerlinger, P. Flight Strategies of Migrating Hawks (University of Chicago Press, 1989).

  • Sergio, F. et al. When and where mortality occurs throughout the annual cycle changes with age in a migratory bird: individual vs population implications. Sci. Rep. 9, 17352 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Sergio, F. et al. Raptor nest decorations are a reliable threat against conspecifics. Science 331, 327–330 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Parker, D. & Diop-Kane, M. Meteorology of Tropical West Africa: The Forecaster’s Handbook (2017).

  • Liechti, F., Hedenström, A. & Alerstam, T. Effects of sidewinds on optimal flight speed of birds. J. Theor. Biol. 170, 219–225 (1994).

    Article 

    Google Scholar 

  • Liechti, F. & Bruderer, B. The relevance of wind for optimal migration theory. J. Avian Biol. 29, 561–568 (1998).

    Article 

    Google Scholar 

  • Cresswell, W. Migratory connectivity of Palaearctic–African migratory birds and their responses to environmental change: the serial residency hypothesis. Ibis 156, 493–510 (2014).

    Article 

    Google Scholar 

  • Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).

    Article 

    Google Scholar 

  • Bowlin, M. S. et al. Grand challenges in migration biology. Integr. Comp. Biol. 50, 261–279 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Mitchell, G. W., Woodworth, B. K., Taylor, P. D. & Norris, D. R. Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird. Mov. Ecol. https://doi.org/10.1186/s40462-015-0046-5 (2015).

  • Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).

  • Horvitz, N. et al. The gliding speed of migrating birds: slow and safe or fast and risky? Ecol. Lett. 17, 670–679 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Reichler, T. Changes in the Atmospheric Circulation as Indicator of Climate Change (Elsevier, 2009).

  • Kling, M. M. & Ackerly, D. D. Global wind patterns and the vulnerability of wind-dispersed species to climate change. Nat. Clim. Change 10, 868–875 (2020).

    Article 

    Google Scholar 

  • Drake, A., Rock, C. A., Quinlan, S. P., Martin, M. & Green, D. J. Wind speed during migration influences the survival, timing of breeding, and productivity of a neotropical migrant, Setophaga petechia. PLoS ONE 9, e97152 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Newton, I. Can conditions experienced during migration limit the population levels of birds? J. Ornithol. 147, 146–166 (2006).

    Article 

    Google Scholar 

  • Loonstra, A. H. J., Verhoeven, M. A., Senner, N. R., Both, C. & Piersma, T. Adverse wind conditions during northward Sahara crossings increase the in-flight mortality of black-tailed godwits. Ecol. Lett. 22, 2060–2066 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Blas, J., Sergio, F. & Hiraldo, F. Age-related improvement in reproductive performance in a long-lived raptor: a cross-sectional and longitudinal study. Ecography 32, 647–657 (2009).

    Article 

    Google Scholar 

  • Sergio, F. et al. No effect of satellite tagging on survival, recruitment, longevity, productivity and social dominance of a raptor, and the provisioning and condition of its offspring. J. Appl. Ecol. 52, 1665–1675 (2015).

    Article 

    Google Scholar 

  • Kenward, R. A Manual for Wildlife Radio Tagging (Academic Press, 2001).

  • Hersbach, H., et al. ERA5 hourly data on pressure levels from 1979 to present. Copernicus Climate Change Service Climate Data Store https://doi.org/10.24381/cds.bd0915c6 (2018).

  • Klaassen, R. H. G., Hake, M., Strandberg, R. & Alerstam, T. Geographical and temporal flexibility in the response to crosswinds by migrating raptors. Proc. R. Soc. B 278, 1339–1346 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Bohrer, G. et al. Estimating updraft velocity components over large spatial scales: contrasting migration strategies of golden eagles and turkey vultures. Ecol. Lett. 15, 96–103 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Shannon, H. D., Young, G. S., Yates, M. A., Fuller, M. R. & Seegar, W. S. Measurements of thermal updraft intensity over complex terrain using American white pelicans and a simple boundary-layer forecast model. Bound. Layer Meteorol. 104, 167–199 (2002).

    Article 

    Google Scholar 

  • Stull, R. B. An Introduction to Boundary Layer Meteorology (Springer, 1988).

  • Safi, K. et al. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight. Mov. Ecol. 1, 1–13 (2013).

    Article 

    Google Scholar 

  • Batschelet, E. Circular Statistics in Biology (Academic Press, 1981).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • O’Neill, P. Magnetoreception and baroreception in birds. Dev. Growth Differ. 55, 188–197 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Bingman, V.P. and Moore, P. in Aeroecology (eds. Chilson, P. B. et al.) 119–143 (Springer International Publishing, 2017).

  • Liechti, F. and McGuire, L. P. in Aeroecology (eds. Chilson, P. B. et al.) 179–198 (Springer International Publishing, 2017).

  • Richardson, W. J. Wind and orientation of migrating birds: a review. EXS 60, 226–249 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Dodge, S. et al. Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America. Philos. Trans. R. Soc. B 369, 20130195 (2014).

    Article 

    Google Scholar 

  • Schaub, M., Kania, W. & Köppen, U. Variation of primary production during winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. J. Anim. Ecol. 74, 656–666 (2005).

    Article 

    Google Scholar 

  • Despland, E., Rosenberg, J. & Simpson, S. J. Landscape structure and locust swarming: a satellite’s eye view. Ecography 27, 381–391 (2004).

    Article 

    Google Scholar 

  • Trierweiler, C. et al. A Palaearctic migratory raptor species tracks shifting prey availability within its wintering range in the Sahel. J. Anim. Ecol. 82, 107–120 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

  • Sapir, N., Horvitz, N., Dechmann, D. K. N., Fahr, J. & Wikelski, M. Commuting fruit bats beneficially modulate their flight in relation to wind. Proc. R. Soc. B 281, 20140018 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Becciu, P., Panuccio, M., Catoni, C., Dell’omo, G. & Sapir, N. Contrasting aspects of tailwinds and asymmetrical response to crosswinds in soaring migrants. Behav. Ecol. Sociobiol. 72, 28 (2018).

    Article 

    Google Scholar 

  • Klaassen, R. H. G. et al. Loop migration in adult marsh harriers Circus aeruginosus, as revealed by satellite telemetry. J. Avian Biol. 41, 200–207 (2010).

    Article 

    Google Scholar 

  • Strandberg, R., Klaassen, R. H. G., Hake, M. & Alerstam, T. How hazardous is the Sahara Desert crossing for migratory birds? Indications from satellite tracking of raptors. Biol. Lett. 6, 297–300 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Pennycuick, D. J. Modelling the Flying Bird (Academic Press, 2008).

  • Shepard, E. L. C., Ross, A. N. & Portugal, S. J. Moving in a moving medium: new perspectives on flight. Phil. Trans. R. Soc. B 371, 20150382 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Van Doren, B. M., Horton, K. G., Stepanian, P. M., Mizrahi, D. S. & Farnsworth, A. Wind drift explains the reoriented morning flights of songbirds. Behav. Ecol. 27, 1122–1131 (2016).

    Article 

    Google Scholar 

  • Sergio, F., Tanferna, A., Blas, J., Blanco, G. & Hiraldo, F. Reliable methods for identifying animal deaths in GPS- and satellite-tracking data: review, testing, and calibration. J. Appl. Ecol. 56, 562–572 (2019).

    Article 

    Google Scholar 

  • Crawley, M. J. The R Book (Wiley, 2013).

  • Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Carbon impacts

    Comparative screening the life-time composition and crystallinity variation in gilthead seabream otoliths Sparus aurata from different marine environments