in

Contributions of distemper control and habitat expansion to the Amur leopard viability

  • Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Morrison, J. C., Sechrest, W., Dinerstein, E., Wilcove, D. S. & Lamoreux, J. F. Persistence of large mammal faunas as indicators of global human impacts. J. Mammal. 88, 1363–1380 (2007).

    Google Scholar 

  • Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).

    PubMed 

    Google Scholar 

  • Finnegan, S. P. et al. Reserve size, dispersal and population viability in wide ranging carnivores: the case of jaguars in Emas National Park, Brazil. Anim. Conserv. 24, 3–14 (2021).

    Google Scholar 

  • Wang, T. et al. Amur tigers and leopards returning to China: direct evidence and a landscape conservation plan. Landsc. Ecol. 31, 491–503 (2016).

    Google Scholar 

  • Gilbert, M. et al. Distemper, extinction, and vaccination of the Amur tiger. Proc. Natl. Acad. Sci. 117, 31954–31962 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, K. F., Acevedo-Whitehouse, K. & Pedersen, A. B. The role of infectious diseases in biological conservation. Anim. Conserv. 12, 1–12 (2009).

    Google Scholar 

  • Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4, 170052 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Courchamp, F. et al. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Wittmann, M. J., Stuis, H. & Metzler, D. Genetic Allee effects and their interaction with ecological Allee effects. J. Anim. Ecol. 87, 11–23 (2018).

    PubMed 

    Google Scholar 

  • Estes, J. A. et al. Trophic Downgrading of Planet Earth. Science 333, 301–306 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Stein, A. B. et al. IUCN Red List of Threatened Species: Panthera pardus. IUCN Red List Threat. Species (2020).

  • Vitkalova, A. V. et al. Transboundary cooperation improves endangered species monitoring and conservation actions: A case study of the global population of Amur leopards. Conserv. Lett. 11, e12574 (2018).

    Google Scholar 

  • Wang, T. et al. A science-based approach to guide Amur leopard recovery in China. Biol. Conserv. 210, 47–55 (2017).

    Google Scholar 

  • Lewis, J. et al. Assessing the health risks of reintroduction: The example of the Amur leopard, Panthera pardus orientalis. Transbound. Emerg. Dis. 67, 1177–1188 (2020).

    PubMed 

    Google Scholar 

  • Terio, K. A. & Craft, M. E. Canine distemper virus (CDV) in another big cat: should CDV be renamed carnivore distemper virus? mBio 4, e00702–e00713 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Adhikari, R. B., Shrestha, M., Puri, G., Regmi, G. R. & Ghimire, T. R. Canine Distemper Virus (CDV): an emerging threat to Nepal’s wildlife. Appl. Sci. Technol. Ann. 1, 149–154 (2020).

    Google Scholar 

  • Roelke-Parker, M. E. et al. A canine distemper virus epidemic in Serengeti lions (Panthera leo). Nature 379, 441–445 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mulia, B. H. et al. Exposure of Wild Sumatran Tiger (Panthera tigris sumatrae) to Canine Distemper Virus. J. Wildl. Dis. 57, 464–466 (2021).

    PubMed 

    Google Scholar 

  • Gordon, C. H. et al. Canine distemper in endangered Ethiopian wolves. Emerg. Infect. Dis. 824–832 (2015) https://doi.org/10.3201/eid2105.141920.

  • Timm, S. F. et al. A suspected canine distemper epidemic as the cause of a catastrophic decline in Santa Catalina Island foxes (Urocyon littoralis catalinae). J. Wildl. Dis. 45, 333–343 (2009).

    PubMed 

    Google Scholar 

  • Sulikhan, N. S. et al. Canine distemper virus in a wild Far Eastern leopard (Panthera pardus orientalis). J. Wildl. Dis. 54, 170–174 (2018).

    PubMed 

    Google Scholar 

  • Gilbert, M. et al. Canine distemper virus as a threat to wild tigers in Russia and across their range. Integr. Zool. 10, 329–343 (2015).

    PubMed 

    Google Scholar 

  • Almberg, E. S., Cross, P. C. & Smith, D. W. Persistence of canine distemper virus in the Greater Yellowstone Ecosystem’s carnivore community. Ecol. Appl. 20, 2058–2074 (2010).

    PubMed 

    Google Scholar 

  • Cleaveland, S. et al. The conservation relevance of epidemiological research into carnivore viral diseases in the Serengeti. Conserv. Biol. 21, 612–622 (2007).

    PubMed 

    Google Scholar 

  • Haydon, D. T. et al. Low-coverage vaccination strategies for the conservation of endangered species. Nature 443, 692–695 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Hebblewhite, M., Miquelle, D. G., Murzin, A. A., Aramilev, V. V. & Pikunov, D. G. Predicting potential habitat and population size for reintroduction of the Far Eastern leopards in the Russian Far East. Biol. Conserv. 144, 2403–2413 (2011).

    Google Scholar 

  • Jiang, G. et al. New hope for the survival of the Amur leopard in China. Sci. Rep. 5, 15475 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Licht, D. S., Moen, R. A. & Romanski, M. Modeling viability of a potential Canada lynx reintroduction to Isle Royale national park. Nat. Areas J. 37, 170–177 (2017).

    Google Scholar 

  • Menges, E. S. Population viability analysis for an endangered plant. Conserv. Biol. 4, 52–62 (1990).

    Google Scholar 

  • Beissinger, S. R. & McCullough, D. R. Population viability analysis. J. Wildl. Manag. 67, 481–506 (2003).

    Google Scholar 

  • Aresu, M. et al. Assessing the effects of different management scenarios on the conservation of small island vulture populations. Bird. Conserv. Int. 31, 111–128 (2021).

    Google Scholar 

  • Benson, J. F. et al. Extinction vortex dynamics of top predators isolated by urbanization. Ecol. Appl. 29, e01868 (2019).

    PubMed 

    Google Scholar 

  • Franklin, A. D., Lacy, R. C., Bauman, K. L., Traylor-Holzer, K. & Powell, D. M. Incorporating drivers of reproductive success improves population viability analysis. Anim. Conserv. 24, 386–400 (2021).

    Google Scholar 

  • McCallum, H. Models for managing wildlife disease. Parasitology 143, 805–820 (2016).

    PubMed 

    Google Scholar 

  • Bradshaw, C. J. A. et al. Novel coupling of individual-based epidemiological and demographic models predicts realistic dynamics of tuberculosis in alien buffalo. J. Appl. Ecol. 49, 268–277 (2012).

    Google Scholar 

  • Shoemaker, K. T. et al. Effects of prey metapopulation structure on the viability of black-footed ferrets in plague-impacted landscapes: a metamodelling approach. J. Appl. Ecol. 51, 735–745 (2014).

    Google Scholar 

  • Shaffer, M. L. Minimum population sizes for species conservation. BioScience 31, 131–134 (1981).

    Google Scholar 

  • Seimon, T. A. et al. Canine distemper virus: an emerging disease in wild endangered Amur tigers (Panthera tigris altaica). mBio 4, e00410–e00413 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, T. et al. An introduction to Long-term Tiger-Leopard Observation Network based on camera traps in Northeast China. Biodivers. Sci. 28, 1059 (2020).

    Google Scholar 

  • Gilbert, M. et al. Estimating the potential impact of canine distemper virus on the Amur tiger population (Panthera tigris altaica) in Russia. PLOS ONE 9, e110811 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fahrig, L. How much habitat is enough? Biol. Conserv. 100, 65–74 (2001).

    Google Scholar 

  • Thatte, P., Joshi, A., Vaidyanathan, S., Landguth, E. & Ramakrishnan, U. Maintaining tiger connectivity and minimizing extinction into the next century: Insights from landscape genetics and spatially-explicit simulations. Biol. Conserv. 218, 181–191 (2018).

    Google Scholar 

  • Hostetler, J. A., Onorato, D. P., Jansen, D. & Oli, M. K. A cat’s tale: the impact of genetic restoration on Florida panther population dynamics and persistence. J. Anim. Ecol. 82, 608–620 (2013).

    PubMed 

    Google Scholar 

  • Johnson, W. E. et al. Genetic restoration of the Florida panther. Science 329, 1641–1645 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sankar, K. et al. Monitoring of reintroduced tigers in Sariska Tiger Reserve, Western India: preliminary findings on home range, prey selection and food habits. Trop. Conserv. Sci. 3, 301–318 (2010).

    Google Scholar 

  • Kelly, P., Stack, D. & Harley, J. A review of the proposed reintroduction program for the Far Eastern leopard (Panthera pardus orientalis) and the role of conservation organizations, veterinarians, and zoos. Top. Companion Anim. Med. 28, 163–166 (2013).

    PubMed 

    Google Scholar 

  • Hayward, M. W. & Somers, M. J. Reintroduction of top-order predators: using science to restore one of the drivers of biodiversity. in Reintroduction of Top-Order Predators 1–9 (John Wiley & Sons, Ltd, 2009). https://doi.org/10.1002/9781444312034.ch1.

  • Pujol, B., Zhou, S.-R., Sanchez Vilas, J. & Pannell, J. R. Reduced inbreeding depression after species range expansion. Proc. Natl Acad. Sci. 106, 15379–15383 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, C., Du, J., Zhu, D. & Zhang, L. Population viability analysis of small population: a case study for Asian elephant in China. Integr. Zool. 15, 350–362 (2020).

    PubMed 

    Google Scholar 

  • Sugimoto, T., Aramilev, V. V., Nagata, J. & McCullough, D. R. Winter food habits of sympatric carnivores, Amur tigers and Far Eastern leopards, in the Russian Far East. Mamm. Biol. 81, 214–218 (2016).

    Google Scholar 

  • Athreya, V., Odden, M., Linnell, J. D. C., Krishnaswamy, J. & Karanth, K. U. A cat among the dogs: leopard Panthera pardus diet in a human-dominated landscape in western Maharashtra, India. Oryx 50, 156–162 (2016).

    Google Scholar 

  • Steinmetz, R., Seuaturien, N., Intanajitjuy, P., Inrueang, P. & Prempree, K. The effects of prey depletion on dietary niches of sympatric apex predators in Southeast Asia. Integr. Zool. 16, 19–32 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Appel, M. J. G. et al. Canine distemper epizootic in lions, tigers, and leopards in North America. J. Vet. Diagn. Invest. 6, 277–288 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53, 1259–1267 (1999).

    PubMed 

    Google Scholar 

  • Fox, C. W. & Reed, D. H. Inbreeding depression increases with environmental stress: an experimental study and meta-analysis. Evolution 65, 246–258 (2011).

    PubMed 

    Google Scholar 

  • Feng, L. et al. Collaboration brings hope for the last Amur leopards. Cat. N. 65, 20 (2017).

    Google Scholar 

  • Lacy, R. C., Pollak, J. P., Miller, P. S., Hungerford, L. & Bright, P. Outbreak. Version 2.10. (2020).

  • Lacy, R. C. & Pollak, J. P. Vortex: A stochastic simulation of the extinction process. Version 10.4. (2021).

  • Pollak, J. P. & Lacy, R. C. Metamodel manager. Version 1.0.6. (2020).

  • Pacioni, C., Sullivan, S., Lees, C. M., Miller, P. S. & Lacy, R. C. Outbreak user’s manual. Version 1.1. (2020).

  • Roscoe, D. E. Epizootiology of canine-distemper in new-jersey raccoons. J. Wildl. Dis. 29, 390–395 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Odden, M. & Wegge, P. Spacing and activity patterns of leopards Panthera pardus in the Royal Bardia National Park, Nepal. Wildl. Biol. 11, 145–152 (2005).

    Google Scholar 

  • Stander, P. E., Haden, P. J., Kaqece, I. & Ghau, I. The ecology of asociality in Namibian leopards. J. Zool. 242, 343–364 (1997).

    Google Scholar 

  • Huisman, J., Kruuk, L. E. B., Ellis, P. A., Clutton-Brock, T. & Pemberton, J. M. Inbreeding depression across the lifespan in a wild mammal population. Proc. Natl Acad. Sci. 113, 3585–3590 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morton, N. E., Crow, J. F. & Muller, H. J. An estimate of the mutational damage in man from data on consanguineous marriages. Proc. Natl Acad. Sci. 42, 855–863 (1956).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balme, G. A., Slotow, R. & Hunter, L. T. B. Edge effects and the impact of non-protected areas in carnivore conservation: leopards in the Phinda–Mkhuze Complex, South Africa. Anim. Conserv. 13, 315–323 (2010).

    Google Scholar 

  • Kumbhojkar, S., Yosef, R., Mehta, A. & Rakholia, S. A camera-trap home-range analysis of the Indian leopard (Panthera pardus fusca) in Jaipur, India. Animals 10, 1600 (2020).

    PubMed Central 

    Google Scholar 

  • Rozhnov, V. V. et al. Home range structure and space use of a female Amur leopard, Panthera pardus orientalis (Carnivora, Felidae). Biol. Bull. 42, 821–830 (2015).

    Google Scholar 

  • Ralls, K., Ballou, J. D. & Templeton, A. Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv. Biol. 2, 185–193 (1988).

    Google Scholar 

  • Hammersley, J. M. & Handscomb, D. C. General principles of the Monte Carlo method. in Monte Carlo Methods (eds. Hammersley, J. M. & Handscomb, D. C.) 50–75 (Springer Netherlands, 1964). https://doi.org/10.1007/978-94-009-5819-7_5.

  • Kenney, J. S., Allendorf, F. W., McDougal, C. & Smith, J. L. D. How much gene flow is needed to avoid inbreeding depression in wild tiger populations? Proc. R. Soc. B Biol. Sci. 281, 20133337 (2014).

    Google Scholar 

  • O’Grady, J. J. et al. Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol. Conserv. 133, 42–51 (2006).

    Google Scholar 

  • Miller, P. S., Lacy, R. C., Medina-Miranda, R., López-Ortiz, R. & Díaz-Soltero, H. Confronting the invasive species crisis with metamodel analysis: An explicit, two-species demographic assessment of an endangered bird and its brood parasite in Puerto Rico. Biol. Conserv. 196, 124–132 (2016).

    Google Scholar 


  • Source: Ecology - nature.com

    Breeding and migration performance metrics highlight challenges for White-naped Cranes

    Grassland coverage change and its humanity effect factors quantitative assessment in Zhejiang province, China, 1980–2018