in

Deep-sea infauna with calcified exoskeletons imaged in situ using a new 3D acoustic coring system (A-core-2000)

  • Joos, F., Plattner, G. K., Stocker, T. F., Marchal, O. & Schmittner, A. Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284(5413), 464–467 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Smith, K. L. et al. Climate, carbon cycling, and deep-ocean ecosystems. Proc. Nat. Acad. Sci USA 106, 19211–19218 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ramirez-Llodra, E. et al. Man and the last great wilderness: Human impact on the deep sea. PLoS ONE 6, e22588 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pham, C. K. et al. Marine litter distribution and density in European Seas, from the shelves to deep basins. PLoS ONE 9, e95839 (2014).

    ADS 
    Article 

    Google Scholar 

  • Angel, M. What is the deep sea? In Deep-sea fishes (eds Randall, D. & Farrell, A.) 1–41 (Academic Publishing, 1997).

    Google Scholar 

  • Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K. & Arbizu, P. M. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).

    Article 

    Google Scholar 

  • Thurber, A. R. et al. Ecosystem function and services provided by the deep sea. Biogeosciences 11, 3941–3963 (2014).

    ADS 
    Article 

    Google Scholar 

  • Solan, M. et al. Extinction and ecosystem function in the marine benthos. Science 306(5699), 1177–1180 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Danise, S., Twitchett, R. J., Little, C. T. & Clemence, M. E. The impact of global warming and anoxia on marine benthic community dynamics: An example from the Toarcian (Early Jurassic). PLoS ONE 8(2), e56255 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Nomaki, H. et al. In situ experimental evidences for responses of abyssal benthic biota to shifts in phytodetritus compositions linked to global climate change. Glob. Chang. Biol. 27, 6139–6155 (2021).

    Article 

    Google Scholar 

  • Viehman, H. A. & Zydlewski, G. B. Fish interactions with a commercial-scale tidal energy device in the natural environment. Estuaries Coast 38(1), 241–252 (2015).

    Article 

    Google Scholar 

  • Danovaro, R. et al. Implementing and innovating marine monitoring approaches for assessing marine environmental status. Front. Mar. Sci. 3, 213 (2016).

    Article 

    Google Scholar 

  • Mizuno, K. et al. An efficient coral survey method based on a large-scale 3-D structure model obtained by Speedy Sea Scanner and U-Net segmentation. Sci. Rep. 10(1), 12416. https://doi.org/10.1038/s41598-020-69400-5 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eleftheriou, A., & Moore, D. C. (2013). Macrofauna techniques. Methods for the study of marine benthos, 175–251.

  • Solan, M. et al. In situ quantification of bioturbation using time lapse fluorescent sediment profile imaging (f SPI), luminophore tracers and model simulation. Mar. Ecol. Prog. Ser. 271, 1–12 (2004).

    ADS 
    Article 

    Google Scholar 

  • Hale, R. et al. High-resolution computed tomography reconstructions of invertebrate burrow systems. Sci. Data 2(1), 1–5 (2015).

    Article 

    Google Scholar 

  • Plets, R. M. et al. The use of a high-resolution 3D Chirp sub-bottom profiler for the reconstruction of the shallow water archaeological site of the Grace Dieu (1439), River Hamble, UK. J. Archaeol. Sci. 36(2), 408–418 (2009).

    Article 

    Google Scholar 

  • Mizuno, K. et al. Automatic non-destructive three-dimensional acoustic coring system for in situ detection of aquatic plant root under the water bottom. Case Stud. Nondestruct. Test. Evaluat. 5, 1–8 (2016).

    CAS 
    Article 

    Google Scholar 

  • Suganuma, H., Mizuno, K. & Asada, A. Application of wavelet shrinkage to acoustic imaging of buried asari clams using high-frequency ultrasound. J. Appl. Phys. 57(7S1), 07LG08 (2018).

    Article 

    Google Scholar 

  • Dorgan, K. M. et al. Impacts of simulated infaunal activities on acoustic wave propagation in marine sediments. J. Acoust. Soc. Am. 147(2), 812–823 (2020).

    ADS 
    Article 

    Google Scholar 

  • Mizuno, K., Cristini, P., Komatitsch, D. & Capdeville, Y. Numerical and experimental study of wave propagation in water-saturated granular media using effective method theories and a full-wave numerical simulation. IEEE J. Ocean. Eng. 45(3), 772–785 (2020).

    ADS 
    Article 

    Google Scholar 

  • Schulze, I. et al. Laboratory measurements to image endobenthos and bioturbation with a high-frequency 3D seismic lander. Geosciences 11(12), 508 (2021).

    ADS 
    Article 

    Google Scholar 

  • Hashimoto, J. et al. Deep-sea communities dominated by the giant clam, Calyptogena soyoae, along the slope foot of Hatsushima Island, Sagami Bay, central Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 71(12), 179–192 (1989).

    Article 

    Google Scholar 

  • Fujikura, K., Hashimoto, J. & Okutani, T. Estimated population densities of megafauna in two chemosynthesisbased communities: A cold seep in Sagami Bay and a hydrothermal vent in the Okinawa Trough. Benthos. Res. 57(1), 21–30 (2002).

    Article 

    Google Scholar 

  • Childress, J. J. & Girguis, P. R. The metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities. J. Exp. Biol. 214(2), 312–325 (2011).

    CAS 
    Article 

    Google Scholar 

  • Okuba, K. (2021). Basic study on sonar system development for exploring infaunal bivalves. Master thesis, GSFS, The University of Tokyo (in Japanese).

  • Stoll, R. D. & Bryan, G. M. Wave attenuation in saturated sediments. The J. Acoust. Soc. Am. 47(5B), 1440–1447 (1970).

    ADS 
    Article 

    Google Scholar 

  • Schwartz, L. & Plona, T. J. Ultrasonic propagation in close-packed disordered suspensions. J. Appl. Phys. 55(11), 3971–3977 (1984).

    ADS 
    Article 

    Google Scholar 

  • Seike, K., Shirai, K. & Murakami-Sugihara, N. Using tsunami deposits to determine the maximum depth of benthic burrowing. PLoS ONE 12(8), e0182753. https://doi.org/10.1371/journal.pone.0182753 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Structural diagnosis of benthic invertebrate communities in relation to salinity gradient in Baltic coastal lake ecosystems using biological trait analysis

    Sustainable management practices vary with farm size in US organic crop production