Hanski, I. Habitat fragmentation and species richness. J. Biogeogr. 42, 989–993. https://doi.org/10.1111/jbi.12478 (2015).
Google Scholar
Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509. https://doi.org/10.1126/science.1194442 (2010).
Google Scholar
Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).
Google Scholar
Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502. https://doi.org/10.1046/j.1523-1739.2002.00386.x (2002).
Google Scholar
Elliot, N. B., Cushman, S. A., Macdonald, D. W. & Loveridge, A. J. The devil is in the dispersers: Predictions of landscape connectivity change with demography. J. Appl. Ecol. 51, 1169–1178. https://doi.org/10.1111/1365-2664.12282 (2014).
Google Scholar
Carroll, C. Interacting effects of climate change, landscape conversion, and harvest on carnivore populations at the range margin: Marten and lynx in the northern Appalachians. Conserv. Biol. 21, 1092–1104. https://doi.org/10.1111/j.1523-1739.2007.00719.x (2007).
Google Scholar
Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484. https://doi.org/10.1126/science.1241484 (2014).
Google Scholar
Farris, Z. J. et al. Hunting, exotic carnivores, and habitat loss: Anthropogenic effects on a native carnivore community, Madagascar. PLOS ONE 10, e0136456. https://doi.org/10.1371/journal.pone.0136456 (2015).
Google Scholar
Farris, Z. J. et al. Threats to a rainforest carnivore community: A multi-year assessment of occupancy and co-occurrence in Madagascar. Biol. Cons. 210, 116–124. https://doi.org/10.1016/j.biocon.2017.04.010 (2017).
Google Scholar
Swihart, R. K., Gehring, T. M., Kolozsvary, M. B. & Nupp, T. E. Responses of “resistant” vertebrates to habitat loss and fragmentation: The importance of niche breadth and range boundaries. Divers. Distrib. 9, 1–18. https://doi.org/10.1046/j.1472-4642.2003.00158.x (2003).
Google Scholar
Caryl, F. M., Quine, C. P. & Park, K. J. Martens in the matrix: The importance of nonforested habitats for forest carnivores in fragmented landscapes. J. Mammal. 93, 464–474. https://doi.org/10.1644/11-MAMM-A-149.1 (2012).
Google Scholar
Pereboom, V. et al. Movement patterns, habitat selection, and corridor use of a typical woodland-dweller species, the European pine marten (Martes martes), in fragmented landscape. Can. J. Zool. 86, 983–991. https://doi.org/10.1139/Z08-076 (2008).
Google Scholar
Fleschutz, M. M. et al. Response of a small felid of conservation concern to habitat fragmentation. Biodivers. Conserv. 25, 1447–1463. https://doi.org/10.1007/s10531-016-1118-6 (2016).
Google Scholar
Gálvez, N. et al. Forest cover outside protected areas plays an important role in the conservation of the Vulnerable guiña Leopardus guigna. Oryx 47, 251–258. https://doi.org/10.1017/S0030605312000099 (2013).
Google Scholar
Belcher, C. A. Demographics of tiger quoll (Dasyurus maculatus maculatus) populations in south-eastern Australia. Aust. J. Zool. 51, 611–626. https://doi.org/10.1071/ZO02051 (2003).
Google Scholar
Maxwell, S., Burbidge, A. & Morris, K. Spotted-tailed Quoll (SE mainland and Tas); recovery outline. (1996).
Jones, M. E., Rose, R. K. & Burnett, S. Dasyurus maculatus. Mammalian Species 676, 1–9 (2001).
Google Scholar
Long, K. & Nelson, J. National recovery plan for the spotted-tailed Quoll Dasyurus maculatus. Victorian Department of Sustainability and Environment (2010).
Claridge, A. W. et al. Home range of the spotted-tailed quoll (Dasyurus maculatus), a marsupial carnivore, in a rainshadow woodland. Wildl. Res. 32, 7–14. https://doi.org/10.1071/WR04031 (2005).
Google Scholar
Glen, A. S. & Dickman, C. R. Home range, denning behaviour and microhabitat use of the carnivorous marsupial Dasyurus maculatus in eastern Australia. J. Zool. 268, 347–354. https://doi.org/10.1111/j.1469-7998.2006.00064.x (2006).
Google Scholar
Körtner, G. et al. Population structure, turnover and movement of spotted-tailed quolls on the New England Tablelands. Wildl. Res. 31, 475–484. https://doi.org/10.1071/WR03041 (2004).
Google Scholar
Belcher, C. The Largest Surviving Marsupial Carnivore on Mainland Australia: The Tiger or Spotted-Tailed Quoll Dasyurus maculatus, A Nationally Threatened, Forest-Dependent Species 612–623 (Royal Zoological Society of New South Wales, Sydney, 2004).
Henderson, T., Fancourt, B. A., Rajaratnam, R., Vernes, K. & Ballard, G. Spatial and temporal interactions between endangered spotted-tailed quolls and introduced red foxes in a fragmented landscape. J. Zool. https://doi.org/10.1111/jzo.12919 (2021).
Google Scholar
Troy, S. N. Spatial Ecology of the Tasmanian Spotted-Tailed Quoll. Ph.D. Thesis, University of Tasmania, (2014).
Jones, M. E. et al. Research supporting restoration aiming to make a fragmented landscape ‘functional’ for native wildlife. Ecol. Manag. Restor. 22, 65–74. https://doi.org/10.1111/emr.12504 (2021).
Google Scholar
Andersen, G. E., Johnson, C. N., Barmuta, L. A. & Jones, M. E. Use of anthropogenic linear features by two medium-sized carnivores in reserved and agricultural landscapes. Scientific Reports 7, 1–11. https://doi.org/10.1038/s41598-017-11454-z (2017).
Google Scholar
Nichols, J. D. in Applied Ecology and Human Dimensions in Biological Conservation (eds L. M. Verdade, M.C. Lyra-Jorge, & C.I. Pina) 117–131 (Springer, 2014).
Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. in Spatial Capture-Recapture (eds J. Andrew Royle, Richard B. Chandler, Rahel Sollmann, & Beth Gardner) 3–19 (Academic Press, 2014).
Sollmann, R., Gardner, B. & Belant, J. L. How does spatial study design influence density estimates from spatial capture-recapture models?. PLoS ONE 7, e34575 (2012).
Google Scholar
Kalle, R., Ramesh, T., Qureshi, Q. & Sankar, K. Density of tiger and leopard in a tropical deciduous forest of Mudumalai Tiger Reserve, southern India, as estimated using photographic capture–recapture sampling. Acta Theriol. 56, 335–342. https://doi.org/10.1007/s13364-011-0038-9 (2011).
Google Scholar
Vissia, S., Wadhwa, R. & van Langevelde, F. Co-occurrence of high densities of brown hyena and spotted hyena in central Tuli, Botswana. J. Zool. 314, 143–150. https://doi.org/10.1111/jzo.12873 (2021).
Google Scholar
Henderson, T., Fancourt, B. A. & Ballard, G. The importance of species-specific survey designs: Prey camera trap surveys significantly underestimate the detectability of endangered spotted-tailed quolls. Aust. Mammalogy https://doi.org/10.1071/AM21039 (2022).
Gorta, S. B. Z., Alting, B., Claridge, A. & Henderson, T. Apparent piebald variants in quolls (Dasyurus): Examples of three recent cases in the spotted-tailed quoll Dasyurus maculatus. Aust. Mammalogy 43, 373–377. https://doi.org/10.1071/AM20058 (2021).
Google Scholar
Kowalksi, M. (https://exifpro.informer.com/2.1/, 2011).
Efford, M. in R package version 4.5.3 (2022).
R Core Team. (R Foundation for Statistical Computing, Vienna, Austria, 2022).
Rovero, F. & Zimmermann, F. Camera Trapping for Wildlife Research (Pelagic Publishing Ltd, London, 2016).
Efford, M. Density estimation in live-trapping studies. Oikos 106, 598–610. https://doi.org/10.1111/j.0030-1299.2004.13043.x (2004).
Google Scholar
Niedballa, J., Sollmann, R., Courtiol, A. & Wilting, A. camtrapR: An R package for efficient camera trap data management. Methods Ecol. Evol. 7, 1457–1462. https://doi.org/10.1111/2041-210X.12600 (2016).
Google Scholar
Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. Model Sel. Multimodel Inference 2, 70–71 (2002).
Google Scholar
Hamer, R. P. et al. Differing effects of productivity on home-range size and population density of a native and an invasive mammalian carnivore. Wildlife Res. 49, 158–168. https://doi.org/10.1071/WR20134 (2021).
Google Scholar
Glen, A. S. & Dickman, C. R. Complex interactions among mammalian carnivores in Australia, and their implications for wildlife management. Biol. Rev. 80, 387–401. https://doi.org/10.1017/s1464793105006718 (2005).
Google Scholar
Glen, A. S., Pennay, M., Dickman, C. R., Wintle, B. A. & Firestone, K. B. Diets of sympatric native and introduced carnivores in the Barrington Tops, eastern Australia. Austral Ecol. 36, 290–296. https://doi.org/10.1111/j.1442-9993.2010.02149.x (2011).
Google Scholar
Glen, A. S. & Dickman, C. R. Population viability analysis shows spotted-tailed quolls may be vulnerable to competition. Aust Mammalogy 35, 180–183. https://doi.org/10.1071/AM12045 (2013).
Google Scholar
Graham, C. A., Maron, M. & McAlpine, C. A. Influence of landscape structure on invasive predators: Feral cats and red foxes in the brigalow landscapes, Queensland Australia. Wildl. Res. 39, 661–676. https://doi.org/10.1071/WR12008 (2012).
Google Scholar
Glen, A. S. Population attributes of the spotted-tailed quoll (Dasyurus maculatus) in north-eastern New South Wales. Aust. J. Zool. 56, 137–142. https://doi.org/10.1071/ZO08025 (2008).
Google Scholar
Chua, M. A., Sivasothi, N. & Meier, R. Population density, spatiotemporal use and diet of the leopard cat (Prionailurus bengalensis) in a human-modified succession forest landscape of Singapore. Mammal Res. 61, 99–108 (2016).
Google Scholar
Lorica, M. & Heaney, L. Survival of a native mammalian carnivore, the leopard cat Prionailurus bengalensis Kerr, 1792 (Carnivora: Felidae), in an agricultural landscape on an oceanic Philippine island. J. Threatened Taxa, 4451–4460 (2013).
Rajaratnam, R., Sunquist, M., Rajaratnam, L. & Ambu, L. Diet and habitat selection of the leopard cat (Prionailurus bengalensis borneoensis) in an agricultural landscape in Sabah, Malaysian Borneo. J. Trop. Ecol. 23, 209–217 (2007).
Google Scholar
Belcher, C. A. & Darrant, J. P. Den use by the spotted-tailed quoll Dasyurus maculatus in south-eastern Australia. Aust Mammalogy 28, 59–64. https://doi.org/10.1071/AM06007 (2006).
Google Scholar
Glen, A. & Dickman, C. Why are there so many spotted-tailed Quolls Dasyurus maculatus in parts of north-eastern New South Wales?. Aust Zool 35, 711–718. https://doi.org/10.7882/az.2011.023 (2011).
Google Scholar
Hanski, I. Metapopulation ecology (Oxford University Press, Oxford, 1999).
Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).
Google Scholar
Belcher, C. A. Susceptibility of the tiger quoll, Dasyurus maculatus, and the eastern quoll, D. viverrinus, to 1080-poisoned baits in control programmes for vertebrate pests in eastern Australia. Wildl. Res. 25, 33–40. https://doi.org/10.1071/WR95077 (1998).
Google Scholar
Schmidt, G. M., Graves, T. A., Pederson, J. C. & Carroll, S. L. Precision and bias of spatial capture–recapture estimates: A multi-site, multi-year Utah black bear case study. Ecological Applications 32, e2618. https://doi.org/10.1002/eap.2618 (2022).
Google Scholar
White, G. C. Capture-Recapture and Removal Methods for Sampling Closed Populations (Los Alamos National Laboratory, New Mexico, 1982).
Thornton, D. H. & Pekins, C. E. Spatially explicit capture–recapture analysis of bobcat (Lynx rufus) density: Implications for mesocarnivore monitoring. Wildl. Res. 42, 394–404. https://doi.org/10.1071/WR15092 (2015).
Google Scholar
Sollmann, R. et al. Improving density estimates for elusive carnivores: Accounting for sex-specific detection and movements using spatial capture–recapture models for jaguars in central Brazil. Biol. Cons. 144, 1017–1024 (2011).
Google Scholar
Green, A. M., Chynoweth, M. W. & Şekercioğlu, Ç. H. Spatially explicit capture-recapture through camera trapping: A review of benchmark analyses for wildlife density estimation. Front. Ecol. Evol. 8, 473. https://doi.org/10.3389/fevo.2020.563477 (2020).
Google Scholar
du Preez, B. D., Loveridge, A. J. & Macdonald, D. W. To bait or not to bait: a comparison of camera-trapping methods for estimating leopard Panthera pardus density. Biol. Cons. 176, 153–161 (2014).
Google Scholar
Zimmermann, F., Breitenmoser-Würsten, C., Molinari-Jobin, A. & Breitenmoser, U. Optimizing the size of the area surveyed for monitoring a Eurasian lynx (Lynx lynx) population in the Swiss Alps by means of photographic capture–recapture. Integr. Zool. 8, 232–243 (2013).
Google Scholar
Dupont, P., Milleret, C., Gimenez, O. & Bischof, R. Population closure and the bias-precision trade-off in spatial capture–recapture. Methods Ecol. Evol. 10, 661–672. https://doi.org/10.1111/2041-210X.13158 (2019).
Google Scholar
Mergey, M., Helder, R. & Roeder, J. J. Effect of forest fragmentation on space-use patterns in the European pine marten (Martes martes). J. Mammal. 92, 328–335. https://doi.org/10.1644/09-MAMM-A-366.1 (2011).
Google Scholar
Silmi, M. et al. Activity and ranging behavior of leopard cats (Prionailurus bengalensis) in an oil palm landscape. Frontiers in Environmental Science 9, 651939. https://doi.org/10.3389/fenvs.2021.651939 (2021).
Google Scholar
Source: Ecology - nature.com