in

Divergent roles of herbivory in eutrophying forests

  • FAO. Global forest resources assessment. www.fao.org/publications (2015).

  • Finlayson, M. et al. A Report of the Millennium Ecosystem Assessment. (The Cropper Foundation, 2005).

  • Lal, R., & Lorenz, K. In Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle (eds Lal, R., Lorenz, K., Hüttl, R. F., Schneider, B. U. & von Braun, J.) Ch. 9 (Springer, 2012).

  • Gilliam, F. S. Forest ecosystems of temperate climatic regions: from ancient use to climate change. N. Phytologist 212, 871–887 (2016).

    Article 

    Google Scholar 

  • de Gouvenain, R. C. & Silander, J. A. Temperate forests in Reference Module in Life Sciences (Elsevier, 2017).

  • Keith, S. A., Newton, A. C., Morecroft, M. D., Bealey, C. E. & Bullock, J. M. Taxonomic homogenization of woodland plant communities over 70 years. Proc. R. Soc. B: Biol. Sci. 276, 3539–3544 (2009).

    Article 

    Google Scholar 

  • Rackham, O. Ancient woodlands: modern threats. N. Phytologist 180, 571–586 (2008).

    Article 

    Google Scholar 

  • Bernhardt-Römermann, M. et al. Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob. Chang. Biol. 21, 3726–3737 (2015).

    Article 
    ADS 

    Google Scholar 

  • Waller, D. M. & Alverson, W. S. The white-tailed deer: a keystone herbivore. Wildl. Soc. Bull. 25, 217–226 (1997).

    Google Scholar 

  • Ramirez, J. I. Uncovering the different scales in deer–forest interactions. Ecol. Evol. 11, 5017–5024 (2021).

    Article 

    Google Scholar 

  • Rooney, T. P., Wiegmann, S. M., Rogers, D. A. & Waller, D. M. Biotic impoverishment and homogenization in unfragmented forest understory communities. Conserv. Biol. 18, 787–798 (2004).

  • Stockton, S. A., Allombert, S., Gaston, A. J. & Martin, J. L. A natural experiment on the effects of high deer densities on the native flora of coastal temperate rain forests. Biol. Conserv 126, 118–128 (2005).

    Article 

    Google Scholar 

  • Hegland, S. J., Lilleeng, M. S. & Moe, S. R. Old-growth forest floor richness increases with red deer herbivory intensity. Ecol. Manag. 310, 267–274 (2013).

    Article 

    Google Scholar 

  • Simončič, T., Bončina, A., Jarni, K. & Klopčič, M. Assessment of the long-term impact of deer on understory vegetation in mixed temperate forests. J. Veg. Sci. 30, 108–120 (2019).

    Article 

    Google Scholar 

  • Vild, O. et al. The paradox of long-term ungulate impact: increase of plant species richness in a temperate forest. Appl. Veg. Sci. 20, 282–292 (2017).

    Article 

    Google Scholar 

  • Russell, F. L., Zippin, D. B. & Fowler, N. L. Effects of white-tailed deer (Odocoileus virginianus) on plants, plant populations and communities: a review. Am. Midl. Nat. 146, 1–26 (2001).

    Article 

    Google Scholar 

  • Öllerer, K. et al. Beyond the obvious impact of domestic livestock grazing on temperate forest vegetation–A global review. Biol. Conserv. 237, 209–219 (2019).

    Article 

    Google Scholar 

  • Borer, E. T. et al. Nutrients cause grassland biomass to outpace herbivory. Nat. Commun. 11, 1–8 (2020).

    Article 
    ADS 

    Google Scholar 

  • Kaarlejärvi, E., Eskelinen, A. & Olofsson, J. Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains. Nat. Commun. 8, 1–8 (2017).

    Google Scholar 

  • Simkin, S. M. et al. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc. Natl Acad. Sci. USA 113, 4086–4091 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecol. Appl. 20, 30–59 (2010).

    Article 
    CAS 

    Google Scholar 

  • Reinecke, J., Klemm, G. & Heinken, T. Vegetation change and homogenization of species composition in temperate nutrient deficient Scots pine forests after 45 yr. J. Veg. Sci. 25, 113–121 (2014).

    Article 

    Google Scholar 

  • Speed, J. D. M., Austrheim, G., Kolstad, A. L. & Solberg, E. J. Long-term changes in northern large-herbivore communities reveal differential rewilding rates in space and time. PLoS ONE 14, e0217166 (2019).

    Article 
    CAS 

    Google Scholar 

  • Valente, A. M., Acevedo, P., Figueiredo, A. M., Fonseca, C. & Torres, R. T. Overabundant wild ungulate populations in Europe: management with consideration of socio-ecological consequences. Mamm. Rev. 50, 353–366 (2020).

    Article 

    Google Scholar 

  • Linnell, J. D. C. et al. The challenges and opportunities of coexisting with wild ungulates in the human-dominated landscapes of Europe’s Anthropocene. Biol. Conserv. 244, 108500 (2020).

  • Waller, D. M. The Herbaceous Layer in Forests of Eastern North America (ed. Gilliam, F.) Ch. 16 (Oxford Univ. Press, 2014).

  • Kerley, G. I. H., Kowalczyk, R. & Cromsigt, J. P. G. M. Conservation implications of the refugee species concept and the European bison: king of the forest or refugee in a marginal habitat? Ecography 35, 519–529 (2011).

  • Svenning, J. C. A review of natural vegetation openness in north-western Europe. Biol. Conserv 104, 133–148 (2002).

    Article 

    Google Scholar 

  • Sandom, C. J., Ejrnaes, R., Hansen, M. D. D. & Svenning, J. C. High herbivore density associated with vegetation diversity in interglacial ecosystems. Proc. Natl Acad. Sci. USA 111, 4162–4167 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ramirez, J. I., Jansen, P. A., den Ouden, J., Goudzwaard, L. & Poorter, L. Long-term effects of wild ungulates on the structure, composition and succession of temperate forests. Ecol. Manag. 432, 478–488 (2019).

    Article 

    Google Scholar 

  • Ramirez, J. I., Jansen, P. A. & Poorter, L. Effects of wild ungulates on the regeneration, structure and functioning of temperate forests: A semi-quantitative review. Ecol. Manag. 424, 406–419 (2018).

    Article 

    Google Scholar 

  • Albert, A. et al. Seed dispersal by ungulates as an ecological filter: a trait-based meta-analysis. Oikos 124, 1109–1120 (2015).

    Article 

    Google Scholar 

  • McNaughton, S. J. Grazing lawns: on domesticated and wild grazers. Am. Nat. 128, 937–939 (1986).

    Article 

    Google Scholar 

  • Cromsigt, J. P. G. M. & Kuijper, D. P. J. Revisiting the browsing lawn concept: evolutionary Interactions or pruning herbivores? Perspect. Plant Ecol. 13, 207–215 (2011).

    Article 

    Google Scholar 

  • Ramirez, J. I. et al. Temperate forests respond in a non-linear way to a population gradient of wild deer. Forestry 94, 502–511 (2021).

    Article 

    Google Scholar 

  • Boulanger, V. et al. Ungulates increase forest plant species richness to the benefit of non‐forest specialists. Glob. Chang. Biol. 24, e485–e495 (2018).

    Article 

    Google Scholar 

  • Kirby, K. J. The impact of deer on the ground flora of British broadleaved woodland. Forestry 74, 219–229 (2001).

    Article 

    Google Scholar 

  • Royo, A. A., Collins, R., Adams, M. B., Kirschbaum, C. & Carson, W. P. Pervasive interactions between ungulate browsers and disturbance regimes promote temperate forest herbaceous diversity. Ecology 91, 93–105 (2010).

  • Happonen, K. et al. Trait-based responses to land use and canopy dynamics modify long-term diversity changes in forest understories. Glob. Ecol. Biogeogr. 30, 1863–1875 (2021).

    Article 

    Google Scholar 

  • Peñuelas, J. & Sardans, J. The global nitrogen-phosphorus imbalance. Science 375, 266–267 (2022).

    Article 
    ADS 

    Google Scholar 

  • Staude, I. R. et al. Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nat. Ecol. Evol. 4, 802–808 (2020).

    Article 

    Google Scholar 

  • Newbold, T. et al. Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol. 16, e2006841 (2018).

    Article 

    Google Scholar 

  • Verheyen, K. et al. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. Br. Ecol. Soc. J. Ecol. 100, 352–365 (2012).

    Google Scholar 

  • Gilliam, F. S. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J. Ecol. 94, 1176–1191 (2006).

    Article 
    CAS 

    Google Scholar 

  • de Schrijver, A. et al. Cumulative nitrogen input drives species loss in terrestrial ecosystems. Glob. Ecol. Biogeogr. 652, 803–816 (2011).

    Article 

    Google Scholar 

  • de Frenne, P. et al. Light accelerates plant responses to warming. Nat. Plants 1, 15110 (2015).

    Article 

    Google Scholar 

  • Baeten, L. et al. Herb layer changes (1954-2000) related to the conversion of coppice-with-standards forest and soil acidification. Appl. Veg. Sci. 12, 187–197 (2009).

    Article 

    Google Scholar 

  • Becker, T., Spanka, J., Schröder, L. & Leuschner, C. Forty years of vegetation change in former coppice-with-standards woodlands as a result of management change and N deposition. Appl. Veg. Sci. 20, 304–313 (2017).

    Article 

    Google Scholar 

  • van Calster, H. et al. Diverging effects of overstorey conversion scenarios on the understorey vegetation in a former coppice-with-standards forest. Ecol. Manag. 256, 519–528 (2008).

    Article 

    Google Scholar 

  • Luyssaert, S. et al. The European carbon balance. Part 3: forests. Glob. Chang. Biol. 16, 1429–1450 (2010).

    Article 
    ADS 

    Google Scholar 

  • Kirby, K. J. et al. Five decades of ground flora changes in a temperate forest: the good, the bad and the ambiguous in biodiversity terms. Ecol. Manag. 505, 119896 (2022).

    Article 

    Google Scholar 

  • Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kowalczyk, R., Kamiński, T. & Borowik, T. Do large herbivores maintain open habitats in temperate forests? For. Ecol. Manag. 494, 119310 (2021).

  • Dormann, C. F. et al. Plant species richness increases with light availability, but not variability, in temperate forests understorey. BMC Ecol. 20, 1–9 (2020).

    Article 

    Google Scholar 

  • Dirnböck, T. et al. Forest floor vegetation response to nitrogen deposition in Europe. Glob. Chang. Biol. 20, 429–440 (2014).

    Article 
    ADS 

    Google Scholar 

  • Perring, M. P. et al. Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition. Environ. Pollut. 242, 1787–1799 (2018).

    Article 
    CAS 

    Google Scholar 

  • Anderson, T. M. et al. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology 99, 822–831 (2018).

    Article 

    Google Scholar 

  • Gough, L. & Grace, J. B. Herbivore effects on plant species density at varying productivity levels. Ecology 79, 1586–1594 (1998).

    Article 

    Google Scholar 

  • Eskelinen, A., Harpole, W. S., Jessen, M.-T., Virtanen, R. & Hautier, Y. Light competition drives herbivore and nutrient effects on plant diversity. Nature 611, 301–305 (2022).

  • Knight, T. M., Dunn, J. L., Smith, L. A., Davis, J. A. & Kalisz, S. Deer facilitate invasive plant success in a Pennsylvania forest understory. Nat. Areas 29, 110–116 (2009).

    Article 

    Google Scholar 

  • Beguin, J., Pothier, D. & Côté, S. D. Deer browsing and soil disturbance induce cascading effects on plant communities: a multilevel path analysis. Ecol. Appl. 21, 439–451 (2011).

  • Gilliam, F. S. et al. Twenty-five-year response of the herbaceous layer of a temperate hardwood forest to elevated nitrogen deposition. Ecosphere 7, e01250 (2016).

    Article 

    Google Scholar 

  • de Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).

    Article 
    ADS 

    Google Scholar 

  • Hedwall, P. O. et al. Half a century of multiple anthropogenic stressors has altered northern forest understory plant communities. Ecol. Appl. 29, e01874 (2019).

  • Perring, M. P. et al. Global environmental change effects on plant community composition trajectories depend upon management legacies. Glob. Chang. Biol. 24, 1722–1740 (2018).

    Article 
    ADS 

    Google Scholar 

  • Boulanger, V. et al. Decreasing deer browsing pressure influenced understory vegetation dynamics over 30 years. Ann. Sci. 72, 367–378 (2015).

    Article 

    Google Scholar 

  • Bernes, C. et al. Manipulating ungulate herbivory in temperate and boreal forests: effects on vegetation and invertebrates. A systematic review. Environ. Evid. 7, 1–32 (2018).

    Article 

    Google Scholar 

  • Reimoser, F. Steering the impacts of ungulates on temperate forests. J. Nat. Conserv. 10, 243–252 (2003).

    Article 

    Google Scholar 

  • Vavra, M., Parks, C. G. & Wisdom, M. J. Biodiversity, exotic plant species, and herbivory: the good, the bad, and the ungulate. Ecol. Manag. 246, 66–72 (2007).

    Article 

    Google Scholar 

  • Depauw, L. et al. Light availability and land-use history drive biodiversity and functional changes in forest herb layer communities. J. Ecol. 108, 1411–1425 (2020).

    Article 
    CAS 

    Google Scholar 

  • Chevaux, L. et al. Effects of stand structure and ungulates on understory vegetation in managed and unmanaged forests. Ecol. Appl. 32, e01874 (2022).

  • Gordon, I. J. Browsing and grazing ruminants: are they different beasts? Ecol. Manag. 181, 13–21 (2003).

    Article 

    Google Scholar 

  • Brasseur, B. et al. What deep‐soil profiles can teach us on deep‐time pH dynamics after land use change? Land Degrad. Dev. 29, 2951–2961 (2018).

    Article 

    Google Scholar 

  • Schmitz, A. et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ. Pollut. 244, 980–994 (2019).

    Article 
    CAS 

    Google Scholar 

  • Dirnböck, T. et al. Currently legislated decreases in nitrogen deposition will yield only limited plant species recovery in European forests. Environ. Res. Lett. 13, 125010 (2018).

    Article 

    Google Scholar 

  • Peterken, G. F. Natural Woodland: Ecology and Conservation in Northern Temperate Regions (Cambridge Univ. Press, 1996).

  • Chamberlain, S. A. & Boettiger, C. R Python, and Ruby clients for GBIF species occurrence data. preprint. PeerJ Preprints 5, e3304v1 (2017).

  • Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R. F1000Res 2, 191 (2013).

    Article 

    Google Scholar 

  • Hédl, R., Kopecký, M. & Komárek, J. Half a century of succession in a temperate oakwood: from species-rich community to mesic forest. Divers Distrib. 16, 267–276 (2010).

    Article 

    Google Scholar 

  • Giménez-Anaya, A., Herrero, J., Rosell, C., Couto, S. & García-Serrano, A. Food habits of wild boars (Sus scrofa) in a Mediterranean coastal wetland. Wetlands 28, 197–203 (2008).

    Article 

    Google Scholar 

  • Barrios-Garcia, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol. Invasions 14, 2283–2300 (2012).

    Article 

    Google Scholar 

  • Andersen, R. et al. An overview of the progress and challenges of peatland restoration in Western Europe. Restor. Ecol. 25, 271–282 (2017).

    Article 

    Google Scholar 

  • Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626 (2018).

    Article 

    Google Scholar 

  • van den Berg, L. J. L. et al. Evidence for differential effects of reduced and oxidised nitrogen deposition on vegetation independent of nitrogen load. Environ. Pollut. 208, 890–897 (2016).

    Article 

    Google Scholar 

  • McNaughton, S. J., Oesterheld, M., Frank, D. A. & Williams, K. J. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341, 142–144 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Koerner, S. E. et al. Change in dominance determines herbivore effects on plant biodiversity. Nat. Ecol. Evol. 2, 1925–1932 (2018).

    Article 

    Google Scholar 

  • Fréjaville, T. & Garzón, M. B. The EuMedClim database: yearly climate data (1901-2014) of 1 km resolution grids for Europe and the Mediterranean Basin. Front. Ecol. Evol. 6, 1–5 (2018).

    Article 

    Google Scholar 

  • Al‐Yaari, A. et al. Asymmetric responses of ecosystem productivity to rainfall anomalies vary inversely with mean annual rainfall over the conterminous United States. Glob. Chang. Biol. 26, 6959–6973 (2020).

    Article 
    ADS 

    Google Scholar 

  • Szabó, P. & Hédl, R. Advancing the integration of history and ecology for conservation. Conserv. Biol. 25, 680–687 (2011).

    Article 

    Google Scholar 

  • Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Spec. Feature Ecol. 80, 1150–1156 (1999).

    Google Scholar 

  • Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).

    Article 

    Google Scholar 

  • Holz, H., Segar, J., Valdez, J. & Staude, I. R. Assessing extinction risk across the geographic ranges of plant species in Europe. Plants People Planet 4, 303–311 (2022).

    Article 

    Google Scholar 

  • Staude, I. R. et al. Directional turnover towards larger‐ranged plants over time and across habitats. Ecol. Lett. 25, 466–482 (2021).

    Article 

    Google Scholar 

  • Ellenberg, H., Weber, H. E., Düll, R., Wirth, V. & Werner, W. Zeigerwerte von Pflanzen in Mitteleuropa (Verlag Wrich Goltze, 2001).

  • Chytrý, M., Tichý, L., Dřevojan, P., Sádlo, J. & Zelený, D. Ellenbergtype indicator values for the Czech flora. Preslia 90, 83–103 (2018).

  • Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article 

    Google Scholar 

  • Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).

    MathSciNet 

    Google Scholar 

  • Dushoff, J., Kain, M. P. & Bolker, B. M. I can see clearly now: reinterpreting statistical significance. Methods Ecol. Evol. 10, 756–759 (2019).

    Article 

    Google Scholar 

  • Bradshaw, L. & Waller, D. M. Impacts of white-tailed deer on regional patterns of forest tree recruitment. Ecol. Manag. 375, 1–11 (2016).

    Article 

    Google Scholar 

  • McGarvey, J. C., Bourg, N. A., Thompson, J. R., McShea, W. J. & Shen, X. Effects of twenty years of deer exclusion on woody vegetation at three life-history stages in a mid-atlantic temperate deciduous forest. Northeast. Nat. 20, 451–468 (2013).

  • Nuttle, T., Ristau, T. E. & Royo, A. A. Long-term biological legacies of herbivore density in a landscape-scale experiment: forest understoreys reflect past deer density treatments for at least 20 years. J. Ecol. 102, 221–228 (2013).


  • Source: Ecology - nature.com

    The success of woody plant removal depends on encroachment stage and plant traits

    Evelyn Wang appointed as director of US Department of Energy’s Advanced Research Projects Agency-Energy