in

Ecological dynamics of the gut microbiome in response to dietary fiber

  • Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61:364–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vinolo MAR, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3:858–76.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Litvak Y, Byndloss MX, Bäumler AJ. Colonocyte metabolism shapes the gut microbiota. Science. 2018;362:t9076.

    Article 
    CAS 

    Google Scholar 

  • Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51:600–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359:1151–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sitkin S, Vakhitov T, Pokrotnieks J. How to increase the butyrate-producing capacity of the gut microbiome: do IBD patients really need butyrate replacement and butyrogenic therapy? J Crohn’s Colitis. 2018;12:881–2.

    Article 

    Google Scholar 

  • Lordan C, Thapa D, Ross RP, Cotter PD. Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes. 2019;11:1–20.

  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Singh V, Yeoh BS, Walker RE, Xiao X, Saha P, Golonka RM, et al. Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Gut. 2019;68:1801–12.

  • Healey G, Murphy R, Butts C, Brough L, Whelan K, Coad J. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Brit J Nutr. 2018;119:176–89.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Baxter NT, Schmidt AW, Venkataraman A, Kim KS, Waldron C, Schmidt TM. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio. 2019;10:e02566–18.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Deehan EC, Yang C, Perez-Muñoz ME, Nguyen NK, Cheng CC, Triador L, et al. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe. 2020;27:389–404.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, Schmidt TM. Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome. 2016;4:33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nguyen NK, Deehan EC, Zhang Z, Jin M, Baskota N, Perez-Muñoz ME, et al. Gut microbiota modulation with long-chain corn bran arabinoxylan in adults with overweight and obesity is linked to an individualized temporal increase in fecal propionate. Microbiome. 2020;8:118.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 2012;6:1535–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lahti L, Salojarvi J, Salonen A, Scheffer M, de Vos WM. Tipping elements in the human intestinal ecosystem. Nat Commun. 2014;5:4344.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rodriguez J, Hiel S, Neyrinck AM, Le Roy T, Pötgens SA, Leyrolle Q, et al. Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut. 2020;69:1975–87.

  • Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 2015;22:971–82.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability. Science. 2015;350:663–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Davis LMG, Martínez I, Walter J, Goin C, Hutkins RW. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS ONE. 2011;6:e25200.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Solden LM, Naas AE, Roux S, Daly RA, Collins WB, Nicora CD, et al. Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. Nat Microbiol. 2018;3:1274–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rakoff-Nahoum S, Coyne MJ, Comstock LE. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr Biol. 2014;24:40–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rao C, Coyte KZ, Bainter W, Geha RS, Martin CR, Rakoff-Nahoum S. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature. 2021;591:633–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Koskella B, Hall LJ, Metcalf C. The microbiome beyond the horizon of ecological and evolutionary theory. Nat Ecol Evol. 2017;1:1606–15.

    PubMed 
    Article 

    Google Scholar 

  • Goldford JE, Lu N, Bajic D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ortiz A, Vega NM, Ratzke C, Gore J. Interspecies bacterial competition regulates community assembly in the C. elegans intestine. ISME J. 2021;15:2131–45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu Z, de Vries B, Gerritsen J, Smidt H, Zoetendal EG. Microbiome-based stratification to guide dietary interventions to improve human health. Nutr Res. 2020;82:1–10.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ahmed W, Rashid S. Functional and therapeutic potential of inulin: a comprehensive review. Crit Rev Food Sci Nutr. 2019;59:1–13.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cerqueira FM, Photenhauer AL, Pollet RM, Brown HA, Koropatkin NM. Starch digestion by gut bacteria: crowdsourcing for carbs. Trends Microbiol. 2019;28:95–108.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Parker KD, Albeke SE, Gigley JP, Goldstein AM, Ward NL. Microbiome composition in both wild-type and disease model mice is heavily influenced by mouse facility. Front Microbiol. 2018;9:1598.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ericsson AC, Davis JW, Spollen W, Bivens N, Givan S, Hagan CE, et al. Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice. PLoS ONE. 2015;10:e116704.

    Article 
    CAS 

    Google Scholar 

  • Martino C, Morton JT, Marotz CA, Thompson LR, Tripathi A, Knight R, et al. A novel sparse compositional technique reveals microbial perturbations. mSystems. 2019;4:e00016–19.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lagkouvardos I, Lesker TR, Hitch TCA, Gálvez EJC, Smit N, Neuhaus K, et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome. 2019;7:28.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pereira FC, Wasmund K, Cobankovic I, Jehmlich N, Herbold CW, Lee KS, et al. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun. 2020;11:5104.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A new genomic blueprint of the human gut microbiota. Nature. 2019;568:499–504.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Creswell R, Tan J, Leff JW, Brooks B, Mahowald MA, Thieroff-Ekerdt R, et al. High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Med. 2020;12:59.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mackevicius EL, Bahle AH, Williams AH, Gu S, Denisenko NI, Goldman MS, et al. Unsupervised discovery of temporal sequences in high-dimensional datasets, with applications to neuroscience. Elife. 2019;8:e38471.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Morjaria S, Schluter J, Taylor BP, Littmann ER, Carter RA, Fontana E, et al. Antibiotic-induced shifts in fecal microbiota density and composition during hematopoietic stem cell transplantation. Infect Immun. 2019;87:e00206.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stein RR, Bucci V, Toussaint NC, Buffie CG, Ratsch G, Pamer EG, et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput Biol. 2013;9:e1003388.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota. Nature. 2016;533:255–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012;10:323–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chijiiwa R, Hosokawa M, Kogawa M, Nishikawa Y, Ide K, Sakanashi C, et al. Single-cell genomics of uncultured bacteria reveals dietary fiber responders in the mouse gut microbiota. Microbiome. 2020;8:5–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhou K. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. J Funct Foods. 2017;33:194–201.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wu G, Zhao N, Zhang C, Lam YY, Zhao L. Guild-based analysis for understanding gut microbiome in human health and diseases. Genome Med. 2021;13:22.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Patnode ML, Beller ZW, Han ND, Cheng J, Peters SL, Terrapon N, et al. Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell. 2019;179:59–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Salonen A, Lahti L, Salojarvi J, Holtrop G, Korpela K, Duncan SH, et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014;8:2218–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sze MA, Topçuoğlu BD, Lesniak NA, Ruffin MT, Schloss PD. Fecal short-chain fatty acids are not predictive of colonic tumor status and cannot be predicted based on bacterial community structure. mBio. 2019;10:e1419–54.

    Article 

    Google Scholar 

  • Li L, Abou-Samra E, Ning Z, Zhang X, Mayne J, Wang J, et al. An in vitro model maintaining taxon-specific functional activities of the gut microbiome. Nat Commun. 2019;10:4146.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Bucci V, Tzen B, Li N, Simmons M, Tanoue T, Bogart E, et al. MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses. Genome Biol. 2016;17:121.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517:205–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, et al. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol. 2016;1:16131.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Xiao Y, Angulo MT, Lao S, Weiss ST, Liu Y. An ecological framework to understand the efficacy of fecal microbiota transplantation. Nat Commun. 2020;11:3329.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Worthen WB, Moore JL. Higher-order interactions and indirect effects: a resolution using laboratory Drosophila communities. Am Nat. 1991;138:1092–104.

    Article 

    Google Scholar 

  • Atkinson G, Batterham AM. True and false interindividual differences in the physiological response to an intervention. Exp Physiol. 2015;100:577–88.

    PubMed 
    Article 

    Google Scholar 

  • Schloss PD. Identifying and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome research. mBio. 2018;9:e00525.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Baxter NT, Lesniak NA, Sinani H, Schloss PD, Koropatkin NM. The glucoamylase inhibitor acarbose has a diet-dependent and reversible effect on the murine gut microbiome. mSphere. 2019;4:e00528.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5:220–30.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hiel S, Bindels LB, Pachikian BD, Kalala G, Broers V, Zamariola G, et al. Effects of a diet based on inulin-rich vegetables on gut health and nutritional behavior in healthy humans. Am J Clin Nutr. 2019;109:1683–95.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nordgaard I, Hove H, Clausen MR, Mortensen PB. Colonic production of butyrate in patients with previous colonic cancer during long-term treatment with dietary fibre (Plantago ovata seeds). Scand J Gastroenterol. 1996;31:1011–20.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sakata T. Pitfalls in short-chain fatty acid research: a methodological review. Anim Sci J. 2019;90:3–13.

    PubMed 
    Article 

    Google Scholar 

  • McNeil NI, Cummings JH, James WP. Short chain fatty acid absorption by the human large intestine. Gut. 1978;19:819–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wu RY, Määttänen P, Napper S, Scruten E, Li B, Koike Y, et al. Non-digestible oligosaccharides directly regulate host kinome to modulate host inflammatory responses without alterations in the gut microbiota. Microbiome. 2017;5:135.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gurry T, Nguyen L, Yu X, Alm EJ. Functional heterogeneity in the fermentation capabilities of the healthy human gut microbiota. PLoS ONE. 2021;16:e254004.

    Article 
    CAS 

    Google Scholar 

  • Johnson AJ, Zheng JJ, Kang JW, Saboe A, Knights D, Zivkovic AM. A guide to diet-microbiome study design. Front Nutr. 2020;7:79.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature. 2018;557:434–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kumar M, Ji B, Zengler K, Nielsen J. Modelling approaches for studying the microbiome. Nat Microbiol. 2019;4:1253–67.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gowda K, Ping D, Mani M, Kuehn S. Genomic structure predicts metabolite dynamics in microbial communities. Cell. 2022;185:530–46.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Qian Y, Lan F, Venturelli OS. Towards a deeper understanding of microbial communities: integrating experimental data with dynamic models. Curr Opin Microbiol. 2021;62:84–92.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kolodziejczyk AA, Zheng D, Elinav E. Diet-microbiota interactions and personalized nutrition. Nat Rev Microbiol. 2019;17:742–53.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.

    PubMed Central 

    Google Scholar 

  • Zhang S, Wang H, Zhu M. A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples. Talanta. 2019;196:249–54.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cai J, Zhang J, Tian Y, Zhang L, Hatzakis E, Krausz KW, et al. Orthogonal comparison of GC–MS and 1H NMR spectroscopy for short chain fatty acid quantitation. Anal Chem. 2017;89:7900–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jian C, Luukkonen P, Yki-Järvinen H, Salonen A, Korpela K. Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS ONE. 2020;15:e227285.

    Article 
    CAS 

    Google Scholar 

  • Liu H, Zeng X, Zhang G, Hou C, Li N, Yu H, et al. Maternal milk and fecal microbes guide the spatiotemporal development of mucosa-associated microbiota and barrier function in the porcine neonatal gut. Bmc Biol. 2019;17:106.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol. 2016;34:942–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol. 2016;7:1451–6.

    Article 

    Google Scholar 

  • Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhao Z, Baltar F, Herndl GJ. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Sci Adv. 2020;6:z4354.

    Article 
    CAS 

    Google Scholar 

  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. Bmc Bioinform. 2010;11:119.

    Article 
    CAS 

    Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinform. 2012;28:3150–2.

    CAS 
    Article 

    Google Scholar 

  • Clausen PTLC, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads against redundant databases with KMA. Bmc Bioinform. 2018;19:307.

    Article 
    CAS 

    Google Scholar 

  • Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nissen JN, Johansen J, Allesøe RL, Sønderby CK, Armenteros JJA, Grønbech CH, et al. Improved metagenome binning and assembly using deep variational autoencoders. Nat Biotechnol. 2021;39:555–60.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stewart RD, Auffret MD, Roehe R, Watson M. Open prediction of polysaccharide utilisation loci (PUL) in 5414 public Bacteroidetes genomes using PULpy. 2018. https://www.biorxiv.org/content/10.1101/421024v1.full.

  • Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Gohl DM, Beckman KB, et al. Evaluating the information content of shallow shotgun metagenomics. mSystems. 2018;3:e00069–18

  • Al-Ghalith GA, Hillmann B, Ang K, Shields-Cutler R, Knights D. SHI7 is a self-learning pipeline for multipurpose short-read DNA quality control. mSystems. 2018;3:e00202.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McDonald JH. Handbook of biological statistics, vol. Baltimore, MD: Sparky House Publishing; 2009.

  • Bashan A, Gibson TE, Friedman J, Carey VJ, Weiss ST, Hohmann EL, et al. Universality of human microbial dynamics. Nature. 2016;534:259–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: a probabilistic programming language. Grantee Submission. 2017;76:1–32.

    Google Scholar 


  • Source: Ecology - nature.com

    MIT J-WAFS announces 2022 seed grant recipients

    Effects of physical parameters on fish migration between a reservoir and its tributaries