in

Ecological network complexity scales with area

  • 1.

    Arrhenius, O. Species and area. J. Ecol. 9, 95–99 (1921).

    Google Scholar 

  • 2.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

  • 3.

    Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, 1995).

  • 4.

    Smith, A. B., Sandel, B., Kraft, N. J. B. & Carey, S. Characterizing scale‐dependent community assembly using the functional‐diversity–area relationship. Ecology 94, 2392–2402 (2013).

    PubMed 

    Google Scholar 

  • 5.

    Mazel, F. et al. Multifaceted diversity–area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Glob. Ecol. Biogeogr. 23, 836–847 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Dias, R. A. et al. Species richness and patterns of overdispersion, clustering and randomness shape phylogenetic and functional diversity–area relationships in habitat islands. J. Biogeogr. 47, 1638–1648 (2020).

    Google Scholar 

  • 7.

    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Simberloff, D. in Tropical Deforestation and Species Extinction (eds Whitmore, T. C. & Sayer, J. A.) 75–89 (Chapman & Hall, 1992).

  • 10.

    Jordano, P. Chasing ecological interactions. PLoS Biol. 14, e1002559 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Montoya, J. M., Woodward, G., Emmerson, M. C. & Solé, R. V. Press perturbations and indirect effects in real food webs. Ecology 90, 2426–2433 (2009).

    PubMed 

    Google Scholar 

  • 12.

    Lurgi, M., López, B. C., Montoya, J. M. & Lopez, B. C. Novel communities from climate change. Philos. Trans. R. Soc. Lond. B 367, 2913–2922 (2012).

    Google Scholar 

  • 13.

    Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202–205 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Montoya, J. M., Rodriguez, M. Á. & Hawkins, B. A. Food web complexity and higher-level ecosystem services. Ecol. Lett. 6, 587–593 (2003).

    Google Scholar 

  • 15.

    Reiss, J., Bridle, J. R., Montoya, J. M. & Woodward, G. Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol. Evol. 24, 505–514 (2009).

    PubMed 

    Google Scholar 

  • 16.

    Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).

    PubMed 

    Google Scholar 

  • 17.

    Cohen, J. E. & Newman, C. M. Community area and food-chain length: theoretical predictions. Am. Nat. 138, 1542–1554 (1991).

    Google Scholar 

  • 18.

    Schoener, T. W. Food webs from the small to the large: the Robert H. MacArthur Award lecture. Ecology 70, 1559–1589 (1989).

    Google Scholar 

  • 19.

    Post, D. M., Pace, M. L. & Hairston, N. G. Ecosystem size determines food-chain length in lakes. Nature 405, 1047–1049 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Brose, U., Ostling, A., Harrison, K. & Martinez, N. D. Unified spatial scaling of species and their trophic interactions. Nature 428, 167–171 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Galiana, N. et al. The spatial scaling of species interaction networks. Nat. Ecol. Evol. 2, 782–790 (2018).

    PubMed 

    Google Scholar 

  • 22.

    Wood, S. A., Russell, R., Hanson, D., Williams, R. J. & Dunne, J. A. Effects of spatial scale of sampling on food web structure. Ecol. Evol. 5, 3769–3782 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Pimm, S. L. et al. Food web patterns and their consequences. Nature 350, 669–674 (1991).

    Google Scholar 

  • 24.

    Martinez, N. D. Constant connectance in community food webs. Am. Nat. 139, 1208–1218 (1992).

    Google Scholar 

  • 25.

    Ings, T. C. et al. Ecological networks–beyond food webs. J. Anim. Ecol. 78, 253–69 (2009).

    PubMed 

    Google Scholar 

  • 26.

    Montoya, J. M. & Solé, R. V. Topological properties of food webs: from real data to community assembly models. Oikos 102, 614–622 (2003).

    Google Scholar 

  • 27.

    Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9, 215–227 (2006).

    PubMed 

    Google Scholar 

  • 28.

    Preston, F. W. Time and space and the variation of species. Ecology 41, 611–627 (1960).

    Google Scholar 

  • 29.

    Turner, W. R. & Tjørve, E. Scale-dependence in species–area relationships. Ecography 6, 721–730 (2005).

    Google Scholar 

  • 30.

    Bengtsson, J. Confounding variables and independent observations in comparative analyses of food webs. Ecology 75, 1282–1288 (1994).

    Google Scholar 

  • 31.

    Vermaat, J. E., Dunne, J. A. & Gilbert, A. J. Major dimensions in food-web structure properties. Ecology 90, 278–282 (2009).

    PubMed 

    Google Scholar 

  • 32.

    Dunne, J. A. et al. Parasites affect food web structure primarily through increased diversity and complexity. PLoS Biol. 11, e1001579 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Poisot, T. & Gravel, D. When is an ecological network complex? Connectance drives degree distribution and emerging network properties. PeerJ 2, e251 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Cohen, J. E. & Briand, Fredeiri Trophic links of community food webs. Proc. Natl Acad. Sci. USA 81, 4105–4109 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Roslin, T., Várkonyi, G., Koponen, M., Vikberg, V. & Nieminen, M. Species–area relationships across four trophic levels—decreasing island size truncates food chains. Ecography 37, 443–453 (2014).

    Google Scholar 

  • 36.

    Holt, R. D., Lawton, J. H., Polis, G. A. & Martinez, N. D. Trophic rank and the species–area relationship. Ecology 80, 1495–1504 (1999).

    Google Scholar 

  • 37.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Montoya, J. M., Pimm, S. L. & Solé, R. V. Ecological networks and their fragility. Nature 442, 259–264 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    James, A., Pitchford, J. W. & Plank, M. J. Disentangling nestedness from models of ecological complexity. Nature 487, 227–230 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Valverde, S. et al. The architecture of mutualistic networks as an evolutionary spandrel. Nat. Ecol. Evol. 2, 94–99 (2018).

    PubMed 

    Google Scholar 

  • 41.

    Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).

    Google Scholar 

  • 42.

    Janzen, D. H. The deflowering of central America. Nat. Hist. 83, 49–53 (1974).

  • 43.

    Mendoza, M. & Araújo, M. B. Climate shapes mammal community trophic structures and humans simplify them. Nat. Commun. 10, 5197 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Emer, C. et al. Seed dispersal networks in tropical forest fragments: area effects, remnant species, and interaction diversity. Biotropica 52, 81–89 (2020).

    Google Scholar 

  • 45.

    McWilliams, C., Lurgi, M., Montoya, J. M., Sauve, A. & Montoya, D. The stability of multitrophic communities under habitat loss. Nat. Commun. 10, 2322 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Fig, T., Mccann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

    Google Scholar 

  • 48.

    Pimm, S. L. & Lawton, J. H. Are food webs divided into compartments? J. Anim. Ecol. 49, 879–898 (1980).

    Google Scholar 

  • 49.

    Macfadyen, S., Gibson, R. H., Symondson, W. O. C. & Memmott, J. Landscape structure influences modularity patterns in farm food webs: consequences for pest control. Ecol. Appl. 21, 516–524 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Reverté, S. et al. Spatial variability in a plant–pollinator community across a continuous habitat: high heterogeneity in the face of apparent uniformity. Ecography 42, 1558–1568 (2019).

    Google Scholar 

  • 51.

    Torné‐Noguera, A., Arnan, X., Rodrigo, A. & Bosch, J. Spatial variability of hosts, parasitoids and their interactions across a homogeneous landscape. Ecol. Evol. 10, 3696–3705 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Hernández‐Castellano, C. et al. A new native plant in the neighborhood: effects on plant–pollinator networks, pollination, and plant reproductive success. Ecology 101, e03046 (2020).

    PubMed 

    Google Scholar 

  • 53.

    Osorio, S., Arnan, X., Bassols, E., Vicens, N. & Bosch, J. Local and landscape effects in a host–parasitoid interaction network along a forest–cropland gradient. Ecol. Appl. 25, 1869–1879 (2015).

    PubMed 

    Google Scholar 

  • 54.

    Kaartinen, R. & Roslin, T. Shrinking by numbers: landscape context affects the species composition but not the quantitative structure of local food webs. J. Anim. Ecol. 80, 622–631 (2011).

    PubMed 

    Google Scholar 

  • 55.

    Vázquez, D. P. & Simberloff, D. Changes in interaction biodiversity induced by an introduced ungulate. Ecol. Lett. 6, 1077–1083 (2003).

    Google Scholar 

  • 56.

    Mulder, C., Den Hollander, H. A. & Hendriks, A. J. Aboveground herbivory shapes the biomass distribution and flux of soil invertebrates. PLoS ONE 3, e3573 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Montoya, D., Yallop, M. L. & Memmott, J. Functional group diversity increases with modularity in complex food webs. Nat. Commun. 6, 7379 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networks. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0631-2 (2018).

  • 59.

    Cagnolo, L., Salvo, A. & Valladares, G. Network topology: patterns and mechanisms in plant–herbivore and host–parasitoid food webs. J. Anim. Ecol. 80, 342–351 (2011).

    PubMed 

    Google Scholar 

  • 60.

    Maiorano, L., Montemaggiori, A., Ficetola, G. F., O’Connor, L. & Thuiller, W. TETRA‐EU 1.0: a species‐level trophic metaweb of European tetrapods. Glob. Ecol. Biogeogr. 29, 1452–1457 (2020).

  • 61.

    Kopelke, J. et al. Food‐web structure of willow‐galling sawflies and their natural enemies across Europe. Ecology 98, 1730 (2017).

    PubMed 

    Google Scholar 

  • 62.

    Sole, R. V. & Montoya, M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B 268, 2039–2045 (2001).

    CAS 

    Google Scholar 

  • 63.

    Broido, A. D. & Clauset, A. Scale-free networks are rare. Nat. Commun. 10, 1017 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Guilhaumon, F., Mouillot, D. & Gimenez, O. mmSAR: an R-package for multimodel species–area relationship inference. Ecography 33, 420–424 (2010).

    Google Scholar 

  • 65.

    Matthews, T. J., Triantis, K. A., Whittaker, R. J. & Guilhaumon, F. sars: an R package for fitting, evaluating and comparing species–area relationship models. Ecography https://doi.org/10.1111/ecog.04271 (2019).

  • 66.

    Galiana, N. Ecological network complexity scales with area. Dryad https://doi.org/10.5061/dryad.zcrjdfndg (2021).

  • Contrasting responses of woody and grassland ecosystems to increased CO2 as water supply varies

    Unique mobile elements and scalable gene flow at the prokaryote–eukaryote boundary revealed by circularized Asgard archaea genomes