in

Empirical support for sequential imprinting during downstream migration in Atlantic salmon (Salmo salar) smolts

  • Lucas, M. & Baras, E. Migration of Freshwater Fishes (Wiley, 2008).

    Google Scholar 

  • Milner-Gulland, E. J., Fryxell, J. M. & Sinclair, A. R. Animal Migration: A Synthesis (Oxford University Press, 2011).

    Book 

    Google Scholar 

  • Hendry, A. P. et al. The evolution of philopatry and dispersal. Evolution Illuminated. Salmon and Their Relatives, 52–91 (2004).

  • Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980).

    Article 

    Google Scholar 

  • Klemetsen, A. et al. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L): A review of aspects of their life histories. Ecol. Freshwater Fish 12, 1–59. https://doi.org/10.1034/j.1600-0633.2003.00010.x (2003).

    Article 

    Google Scholar 

  • VÄHÄ, J. P., Erkinaro, J., Niemelä, E. & Primmer, C. R. Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol. Ecol. 16, 2638–2654 (2007).

    Article 

    Google Scholar 

  • Hansen, L. P., Jonsson, N. & Jonsson, B. Oceanic migration in homing Atlantic salmon. Anim. Behav. 45, 927–941 (1993).

    Article 

    Google Scholar 

  • Keefer, M. L. & Caudill, C. C. Homing and straying by anadromous salmonids: A review of mechanisms and rates. Rev. Fish Biol. Fish. 24, 333–368 (2014).

    Article 

    Google Scholar 

  • Neave, F. Ocean migrations of Pacific salmon. J. Fish. Board Canada 21, 1227–1244 (1964).

    Article 

    Google Scholar 

  • Lohmann, K. J. & Lohmann, C. M. There and back again: Natal homing by magnetic navigation in sea turtles and salmon. J. Exp. Biol. 222, 184077 (2019).

    Article 

    Google Scholar 

  • Scholz, A. T., Horrall, R. M., Cooper, J. C. & Hasler, A. D. Imprinting to chemical cues: The basis for home stream selection in salmon. Science 192, 1247–1249 (1976).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hasler, A. D. & Wisby, W. J. Discrimination of stream odors by fishes and its relation to parent stream behavior. Am. Nat. 85, 223–238 (1951).

    CAS 
    Article 

    Google Scholar 

  • Harden Jones, F. R. Fish Migration. (Edward Arnold, 1968).

  • Donaldson, L. R. & Allen, G. H. Return of silver salmon, Oncorhynchus kisutch (Walbaum) to point of release. Trans. Am. Fish. Soc. 87, 13–22 (1958).

    Article 

    Google Scholar 

  • Quinn, T. P. A review of homing and straying of wild and hatchery-produced salmon. Fish. Res. 18, 29–44 (1993).

    Article 

    Google Scholar 

  • Hansen, L. P. & Jonsson, B. Homing of Atlantic salmon: Effects of juvenile learning on transplanted post-spawners. Animal Behav. 47, 220 (1994).

    Article 

    Google Scholar 

  • Nevitt, G. A., Dittman, A. H., Quinn, T. P. & Moody, W. J. Evidence for a peripheral olfactory memory in imprinted salmon. Proc. Natl. Acad. Sci. 91, 4288–4292. https://doi.org/10.1073/pnas.91.10.4288 (1994).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dittman, A. H., Quinn, T. P. & Nevitt, G. A. Timing of imprinting to natural and artificial odors by coho salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci. 53, 434–442 (1996).

    Article 

    Google Scholar 

  • Morin, P.-P., Dodson, J. J. & Doré, F. Y. Cardiac responses to a natural odorant as evidence of a sensitive period for Olfactory imprinting in young Atlantic Salmon, Salmo salar. Can. J. Fish. Aquat. Sci. 46, 122–130. https://doi.org/10.1139/f89-016 (1989).

    Article 

    Google Scholar 

  • Gunnerød, T., Hvidsten, N. & Heggberget, T. Open sea releases of Atlantic salmon smolts, Salmo salar, in central Norway, 1973–83. Can. J. Fish. Aquat. Sci. 45, 1340–1345 (1988).

    Article 

    Google Scholar 

  • Heggberget, T. G., Hvidsten, N. A., Gunnerød, T. B. & Møkkelgjerd, P. I. Distribution of adult recaptures from hatchery-reared Atlantic salmon (Salmo salar) smolts released in and off-shore of the River Surna, western Norway. Aquaculture 98, 89–96 (1991).

    Article 

    Google Scholar 

  • Solazzi, M. F., Nickelson, T. E. & Johnson, S. L. Survival, contribution, and return of hatchery Coho Salmon (Oncorhynchus kisutch) released into freshwater, Estuarine, and Marine environments. Can. J. Fish. Aquat. Sci. 48, 248–253. https://doi.org/10.1139/f91-034 (1991).

    Article 

    Google Scholar 

  • Sturrock, A. M. et al. Eight decades of hatchery salmon releases in the California Central Valley: Factors influencing straying and resilience. Fisheries 44, 433–444 (2019).

    Article 

    Google Scholar 

  • Chapman, D. et al. Homing in sockeye and Chinook salmon transported around part of their smolt migration route in the Columbia River. North Am. J. Fish. Manag. 17, 101–113 (1997).

    Article 

    Google Scholar 

  • Bond, M. H. et al. Combined effects of barge transportation, river environment, and rearing location on straying and migration of adult Snake River fall-run Chinook Salmon. Trans. Am. Fish. Soc. 146, 60–73. https://doi.org/10.1080/00028487.2016.1235614 (2017).

    Article 

    Google Scholar 

  • Hesthagen, T., Larsen, B. M. & Fiske, P. Liming restores Atlantic salmon (Salmo salar) populations in acidified Norwegian rivers. Can. J. Fish. Aquat. Sci. 68, 224–231. https://doi.org/10.1139/f10-133 (2011).

    Article 

    Google Scholar 

  • Haraldstad, T., Höglund, E., Kroglund, F., Haugen, T. O. & Forseth, T. Common mechanisms for guidance efficiency of descending A tlantic salmon smolts in small and large hydroelectric power plants. River Res. Appl. https://doi.org/10.1002/rra.3360 (2018).

    Article 

    Google Scholar 

  • Thorstad, E. B., Økland, F., Kroglund, F. & Jepsen, N. Upstream migration of Atlantic salmon at a power station on the River Nidelva Southern Norway. Fish. Manag. Ecol. 10, 139–146. https://doi.org/10.1046/j.1365-2400.2003.00335.x (2003).

    Article 

    Google Scholar 

  • Fjeldstad, H.-P., Barlaup, B. T., Stickler, M., Gabrielsen, S.-E. & Alfredsen, K. Removal of weirs and the influence on physical habitat for salmonids in a Norwegian river. River Res. Appl. 28, 753–763. https://doi.org/10.1002/rra.1529 (2012).

    Article 

    Google Scholar 

  • Wolf, P. a trap for the capture of fish and other organisms moving downstream. Trans. Am. Fish. Soc. 80, 41–45. https://doi.org/10.1577/1548-8659(1950)80[41:ATFTCO]2.0.CO;2 (1951).

    Article 

    Google Scholar 

  • Johansen, K. When the Solution Becomes a Problem: A Study of Smolt Migration in the Regulated River of Nidelva in Agder county, Norway. MSc thesis, University of Agder, (2021).

  • R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2016).

  • Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723. https://doi.org/10.1109/TAC.1974.1100705 (1974).

    ADS 
    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • Anderson, D. R. Model-Based Interference in the Life Sciences: A Primer on Evidence (Springer, 2008).

    Book 

    Google Scholar 

  • Jonsson, B., Jonsson, N. & Hansen, L. P. Does juvenile experience affect migration and spawning of adult Atlantic salmon?. Behav. Ecol. Sociobiol. 26, 225–230 (1990).

    Article 

    Google Scholar 

  • Thorstad, E., Heggberget, T. & Økland, F. Migratory behaviour of adult wild and escaped farmed Atlantic salmon, Salmo salar L., before, during and after spawning in a Norwegian river. Aquac. Res. 29, 419–428 (1998).

    Article 

    Google Scholar 

  • Aarestrup, K. et al. Prespawning migratory behaviour and spawning success of sea-ranched Atlantic salmon, Salmo salar L., in the River Gudenaa, Denmark. Fish. Manag. Ecol. 7, 387–400 (2000).

    Article 

    Google Scholar 

  • Thorstad, E. B. et al. Factors affecting the within-river spawning migration of Atlantic salmon, with emphasis on human impacts. Rev. Fish Biol. Fish. 18, 345–371 (2008).

    Article 

    Google Scholar 

  • Silva, A. T. et al. The future of fish passage science, engineering, and practice. Fish Fish. 19, 340 (2017).

    Article 

    Google Scholar 

  • Čada, G. F. The development of advanced hydroelectric turbines to improve fish passage survival. Fisheries 26, 14–23 (2001).

    Article 

    Google Scholar 

  • Quaranta, E. et al. Hydropower case study collection: Innovative Low head and ecologically improved turbines, hydropower in existing infrastructures, hydropeaking reduction: Digitalization and governing systems. Sustainability 12, 8873 (2020).

    Article 

    Google Scholar 

  • Lusardi, R. A. & Moyle, P. B. Two-way trap and haul as a conservation strategy for anadromous salmonids. Fisheries 42, 478–487 (2017).

    Article 

    Google Scholar 

  • Keefer, M. L., Caudill, C. C., Peery, C. A. & Lee, S. R. Transporting juvenile salmon around dams impairs adult migration. Ecol. Appl. 18, 1888–1900. https://doi.org/10.1890/07-0710.1 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Haraldstad, T., Haugen, T. O., Olsen, E. M., Forseth, T. & Höglund, E. Hydropower-induced selection of behavioural traits in Atlantic salmon (Salmo salar). Sci. Rep. 11, 1–9 (2021).

    Article 

    Google Scholar 

  • Waples, R. S. & Hendry, A. P. Special issue: Evolutionary perspectives on salmonid conservation and management. Evolut. Appl. 1, 183–188. https://doi.org/10.1111/j.1752-4571.2008.00035.x (2008).

    Article 

    Google Scholar 

  • Jonsson, B., Jonsson, N. & Hansen, L. P. Atlantic salmon straying from the River Imsa. J. Fish Biol. 62, 641–657. https://doi.org/10.1046/j.0022-1112.2003.00053.x (2003).

    Article 

    Google Scholar 

  • Brown, C. Fish intelligence, sentience and ethics. Anim. Cogn. 18, 1–17 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A new method boosts wind farms’ energy output, without new equipment

    The overlooked role of a biotin precursor for marine bacteria – desthiobiotin as an escape route for biotin auxotrophy